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Abstract

Synthesizing controllable motion for a character using deep
learning has been a promising approach due to its potential to
learn a compact model without laborious feature engineering.
To produce dynamic motion from weak control signals such
as desired paths, existing methods often require auxiliary in-
formation such as phases for alleviating motion ambiguity,
which limits their generalisation capability. As past poses of-
ten contain useful auxiliary hints, in this paper, we propose
a task-agnostic deep learning method, namely Multi-scale
Control Signal-aware Transformer (MCS-T), with an atten-
tion based encoder-decoder architecture to discover the auxil-
iary information implicitly for synthesizing controllable mo-
tion without explicitly requiring auxiliary information such as
phase. Specifically, an encoder is devised to adaptively for-
mulate the motion patterns of a character’s past poses with
multi-scale skeletons, and a decoder driven by control sig-
nals to further synthesize and predict the character’s state
by paying context-specialised attention to the encoded past
motion patterns. As a result, it helps alleviate the issues of
low responsiveness and slow transition which often happen in
conventional methods not using auxiliary information. Both
qualitative and quantitative experimental results on an exist-
ing biped locomotion dataset, which involves diverse types
of motion transitions, demonstrate the effectiveness of our
method. In particular, MCS-T is able to successfully gener-
ate motions comparable to those generated by the methods
using auxiliary information.

1 Introduction
Interactively controlling a character has been increasingly
demanded by various applications such as gaming, vir-
tual reality and robotics. This task remains challenging to
achieve realistic and natural poses with complex motions
and environments, even with large amount of high quality
motion capture (MoCap) data for modelling (Holden, Ko-
mura, and Saito 2017; Peng et al. 2018). Recently, deep
learning techniques have been studied for controllable mo-
tion synthesis given their strong learning capability yet ef-
ficient parallel structures for fast runtime. Many encourag-
ing results have been achieved using deep architectures such
as multilayer perceptron (MLP) networks (Holden, Komura,
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Figure 1: Illustration of the motion manifold of a running
motion sequence. Joint positions and velocities of individual
poses are projected into a 2D space by t-SNE and colored in
line with their phases. It is noticed that auxiliary phases are
continuously distributed on the manifold, which suggests the
potential of inferring the phases from motion attributes.

and Saito 2017), recurrent neural networks (Lee, Lee, and
Lee 2018), generative networks (Henter, Alexanderson, and
Beskow 2020) and deep reinforcement learning architec-
tures (Peng et al. 2018). Particularly, due to the potentials of
delivering fast, responsive yet high-quality controllers, MLP
networks have been devised for biped locomotion (Holden,
Komura, and Saito 2017), quadruped locomotion (Zhang
et al. 2018), daily interaction (Starke et al. 2019), basketball
play (Starke et al. 2020) and stylised motion prediction (Ma-
son, Starke, and Komura 2022). Since a weak control signal,
which is commonly used in graphics, often corresponds to a
large variation of possible motions, these studies have to rely
on auxiliary phase variables in line with the character’s con-
tact states for disambiguation purposes. However, the con-
tact states may not be available for all kinds of motions and
may require manual correction during data acquisition. By
contrast, recurrent neural networks, e.g. (Lee, Lee, and Lee
2018), aim to constrain the next pose prediction subject to
the past motions, which can be task-agnostic in terms of mo-
tion category and demonstrate better generalisation capabil-
ity. The key limitation of RNN based methods is that they
often suffer from slow responsiveness issues due to the large
variation of the hidden memory (Starke et al. 2019).

We believe that auxiliary information can be inferred from
a character’s past motions. As shown in Figure 1, a walking
motion sequence is represented in 2D manifolds by using
different attributes (e.g. joint positions and velocities). It can



be observed that the phases are continuously distributed on
the manifolds, which enables the auxiliary information in-
ference from the motion related attributes. Nonetheless, the
past poses should be used “attentionally” since not all of
them are always informative especially during motion tran-
sition, which is the reason that RNN based methods perform
poorly without explicit data augmentation to the transitional
cases in motion capture (MoCap) data. Therefore, in this
work, we aims to study a deep learning based task-agnostic
method to produce dynamic motion from trajectory-based
control signals, without explicitly using additional auxiliary
information such as phase.

Specifically, we propose a transformer-based encoder-
decoder architecture, namely Multi-Scale Control Signal-
aware Transformer (MCS-T), to attend to the motion infor-
mation of past poses and trajectory with respect to various
scenarios. An encoder formulates the past motion patterns of
a character from multi-scale skeletons in pursuit of learning
spatio-temporal patterns from different levels of dynamics.
With the past motion information, the encoder is expected
to formulate conventional auxiliaries implicitly. Then, a de-
coder guided by the control signals synthesizes and predicts
the next character pose by paying trajectory-specialised at-
tention to the encoded historical motion patterns, rather than
using a long inflexible memory setting. This dynamic mo-
tion modelling pipeline helps alleviate the issues of low re-
sponsiveness and slow transition, which can be observed in
existing methods not using auxiliary information. Compre-
hensive experiments on a biped locomotion dataset contain-
ing various motion transitions (e.g., sudden jumping and un-
even terrain walking) demonstrate the effectiveness of MCS-
T. It produces responsive and dynamic motion, and achieves
a performance comparable to that of the methods explicitly
using auxiliary information while retaining such capability
for various motion categories.

The main contributions of this paper can be summarised
as follows:

• A novel real-time motion controller, namely Multi-Scale
Control Signal-aware Transformer, is proposed to im-
prove the responsiveness and motion dynamics over ex-
isting methods not explicitly using auxiliary informa-
tion. It is also task-agnostic, compared with the meth-
ods explicitly using auxiliary information. To the best of
our knowledge, our task-agnostic method is one of the
first studies utilising transformer based encoder-decoder
scheme for controllable motion synthesis.

• A multi-scale graph modelling scheme is devised to ex-
ploit rich skeleton dynamics.

• A novel control signal-aware self-attention is devised to
inject control signals for motion prediction.

• Comprehensive experiments were conducted to demon-
strate the effectiveness of our proposed MCS-T.

2 Related Work
In this section, we review related studies in terms of
kinematic-based controllable motion synthesis, transformer
based motion learning and multi-scale skeleton.

2.1 Kinematics Based Controllable Motion
Synthesis

The kinematics based methods focus on the motion of char-
acter bodies including the joints without considering the
physics that cause them to move. Four major categories of
methods are reviewed as follows.

Search-based Methods: Early studies were based on
graphs (Arikan and Forsyth 2002; Lee et al. 2002; Kovar,
Gleicher, and Pighin 2008; Lee et al. 2010), where each
frame of a motion database was treated as a vertex and
edges represented possible transitions between two frames.
A graph search can find a path to produce an expected mo-
tion. Motion matching (Clavet 2016; Holden et al. 2020)
simplified the graph search by finding transitional frames
directly in animation databases and produced the state-of-
art gaming animation (Buttner 2019; Zinno 2019). However,
the matching criterion are often required to be devised by ex-
perienced animators for a wide range of motion scenarios.

Recurrent Neural Network based Methods: Fragkiadaki
et al. (2015) constructed an encoder-decoder structure based
on recurrent neural network (RNN) and directly adopted
3D body joint angles to predict character poses. Li et al.
(2017) addressed the error accumulation issue by introduc-
ing a teacher forcing-like mechanism (Williams and Zipser
1989). Lee, Lee, and Lee (2018) incorporated control signals
into RNNs. To alleviate the low responsiveness and slow
motion transition issues caused by the inflexible RNN mem-
ory state, comprehensive data augmentation was conducted
to enrich transitional patterns. However, less motion diver-
sity was observed during the runtime, since the augmented
knowledge was still limited.

Phase-based Methods: Phase-functioned neural network
(Holden, Komura, and Saito 2017) adopted a multilayer per-
ceptron (MLP) to predict biped locomotion with an auxil-
iary foot contact phase, which clusters motion with similar
timing to disambiguate motion predictions. The phase-based
frameworks were further extended to quadruped locomotion
(Zhang et al. 2018), environmental interaction (Starke et al.
2019), basketball game (Starke et al. 2020) and martial arts
(Starke et al. 2021). Nevertheless, the acquisition of phase
information relied on the expertise of animators and the con-
tact information of characters, which may not be univer-
sally available. Mason, Starke, and Komura (2022) proposed
a heuristic principal component analysis based strategy to
compute the phase of a stylised motion, where the arms often
exhibited special movements without contact states. How-
ever, it was still a task-specific solution.

Generative Methods: Instead of predicting a single mo-
tion pose, modelling the conditional pose distribution and
conducting sampling could avoid the averaging pose from
vastly different poses (Habibie et al. 2017; Ling et al. 2020;
Henter, Alexanderson, and Beskow 2020; Liu et al. 2021; Li
et al. 2022; Kania, Kowalski, and Trzciński 2021). Ling et al.
(2020) used a variational autoencoder (VAE) to estimate
the next pose distribution and draw user control-conditioned
samples through reinforcement learning. Normalising flow
was also introduced for this purpose, which modelled mo-
tion distribution and control signal together (Henter, Alexan-



Figure 2: Illustration of our proposed MCS-T method, which is based on an encoder-decoder architecture to formulate the past
motion patterns with multi-scale skeleton representations and predict the next motion with the guidance of the control signals.

derson, and Beskow 2020). Although the generative ap-
proach did not require auxiliary information, it heavily de-
pended on balanced MoCap data distributions (Ling et al.
2020), not designed for trajectory-based control signal (Liu
et al. 2021) or less controlled on produced motion gait (Hen-
ter, Alexanderson, and Beskow 2020).

2.2 Transformer in Motion Learning
Transformers (Vaswani et al. 2017) have achieved great suc-
cess in a wide range of tasks such as natural language pro-
cessing (Devlin et al. 2018) and computer vision (Dosovit-
skiy et al. 2020; Arnab et al. 2021). Compared with tradi-
tional recurrent neural networks, self-attention mechanisms
perform more effectively and efficiently to address sequen-
tial patterns. Therefore, various transformer based methods
were proposed for many motion related tasks such as mo-
tion prediction (Mao, Liu, and Salzmann 2020; Martı́nez-
González, Villamizar, and Odobez 2021; Aksan et al. 2021;
Wang et al. 2021), action recognition (Plizzari, Cannici, and
Matteucci 2021; Mazzia et al. 2022), 3D pose estimation
(Zheng et al. 2021) and motion synthesis (Petrovich, Black,
and Varol 2021). However, there are few studies utilising
transformer for controllable motion synthesis.

2.3 Multi-scale Skeleton
To better explore rich spatial skeleton representations of hu-
man poses, many studies introduced multi-scale skeletons
by using higher order polynomials of adjacency matrices
(Liu et al. 2020), graph convolutions (Jang, Park, and Lee
2022) or heuristic rules (Li et al. 2020; Dang et al. 2021;
Ghosh et al. 2021; Bhattacharya et al. 2021). We address the
multi-scale graphs with transformers to provide multi-scale
tokens with trajectories, which is the first attempt in control-
lable motion synthesis for more responsive motions.

3 Methodology
Figure 2 illustrates the proposed MCS-T architecture, which
addresses the motion control problem as a regression task.

The motion data is first parameterised as pose and trajec-
tory embeddings. The pose embedding is formulated by
multi-scale skeleton graphs for comprehensively exploiting
the past spatio-temporal relations. It encodes the motion se-
quence for each skeleton scale by specialised transformer
encoders for latent motion representation. The representa-
tion is then utilised by a transformer decoder queried by
trajectory information, i.e., control signal, for a control-
conditioned integration with past motion states. Finally, a
motion prediction network predicts the character’s next pose
and potential future trajectory.

3.1 Multi-scale Skeleton Poses
A virtual character is animated upon a skeleton of rotational
joints, of which the coordinates and velocities can be de-
fined regarding the motion. Each pose skeleton in a motion
sequence can be viewed as a graph, where the joints are
vertices and the bones are edges. Based on such graph rep-
resentation, multi-scale skeletons can be constructed for a
pose by aggregating the adjacent vertices as a pooled coarse-
level vertex. As illustrated in Figure 2, two scales of skele-
tons in a fine-to-coarse scheme are adopted in this study.
This scheme aims to comprehensively characterise the spa-
tial patterns, by which the additional coarse-level represen-
tation enables global observations of motions and improves
motion dynamics especially during a motion transition.

The fine-level representation is the same as the original
skeleton structure obtained from MoCap, which contains 31
joints. Specifically, we denote jpi and jvi as the vectors repre-
senting the coordinates local to the corresponding root trans-
formation and velocity values of the fine-level vertices (i.e.,
joints) of the i-th frame, respectively. For the coarse-level
representation, we denote bpi and bvi as the vectors represent-
ing the coordinates and velocity values of the vertices (i.e.,
aggregated joints) of the i-th frame, respectively.

Particularly, for the motion prediction of the i-th frame,
we construct an input Xi, which consists of two compo-
nents regarding the past pose information of the two skeleton



scales: Ji and Bi. In detail, we denote Ji = {(jpi−k, j
v
i−k)},

Bi = {(bpi−k, b
v
i−k)}, k = k1, ..., kK , as the fine and coarse

sequences, respectively. In total, K frames are adopted in-
stead of using all frames for the consideration of both effi-
ciency purpose and model complexity.

3.2 Multi-scale Motion Encoder
A motion encoder aims to formulate the past motion patterns
Xi as a reference for predicting the future motion. Com-
pared with the methods using auxiliary information, our en-
coder only depends on the past motion information available
and can be generalized to all kinds of actions. However, triv-
ially using all past motion information could result in issues
of low responsiveness and slow motion transition. In other
words, using all past information can introduce redundancy
for predicting the next pose and sometimes even disturb the
prediction, which may fall into the historical motion states.
Thus, a transformer-based multi-scale encoder is proposed
to formulate the past motion patterns in an adaptive manner.

The fine and coarse-level pose information Ji and Bi can
be treated as matrices, where each row represents the po-
sition and velocity of a particular temporal motion frame.
Our multi-scale encoder is based on self-attentions (Vaswani
et al. 2017) using the concepts of query, value and key, which
can be formulated as:

QJ
i = JiW

Q,J ,KJ
i = JiW

K,J , V J
i = JiW

V,J ,

QB
i = BiW

Q,B ,KB
i = BiW

K,B , V B
i = BiW

V,B ,
(1)

where W ·,· are projection matrices containing trainable
weights with an output dimension γ, J related matrices for-
mulate the fine-level pose patterns and B related matrices
formulate the coarse-level pose patterns. Then, the temporal
patterns can be computed for each level as follows:

ZJ
i = softmax(

QJ
i K

J
i
⊺

√
γ

)V J
i , ZB

i = softmax(
QB

i K
B
i

⊺

√
γ

)V B
i .

(2)
To this end, the temporal relations of motion frames can

be formulated by observing the entire sequence based on
the weights obtained using the softmax function in Eq.
(2). In practice, multiple independent self-attentions can be
adopted to increase the capability of modelling and feed-
forward components are followed, which is known as a
transformer encoder layer. By stacking multiple transformer
encoder layers for each observation level, the final spatio-
temporal patterns can be obtained. For the convenience of
notations, we still use the symbols ZJ

i and ZB
i to indicate the

encoded sequential representations. By concatenating ZJ
i

and ZB
i in a frame-wise manner, a sequence {Zi} can be

obtained as the encoded multi-scale past motion patterns.

3.3 Control Signal & Trajectory
The trajectory of a character’s movement is based on the
user’s control signals. We denote a trajectory vector:

Ti = (tpi,s−S , ..., t
p
i,s, ..., t

p
i,S−1, t

d
i,s−S , ..., t

d
i,s, ..., t

d
i,S−1,

thi,s−S , ..., t
h
i,s, ..., t

h
i,S−1, t

g
i,s−S , ..., t

g
i,s, ..., t

g
i,S−1),

(3)

which represents the sampled discrete trajectory patterns for
the prediction of the frame i. Particularly, the indices of the
sampled points are specified as s ∈ {s−S , ..., s0, ..., sS−1}.
In this study, we empirically adopt S = 6 and the sam-
pled points are evenly distributed around the current frame
to cover the trajectories 1 second before and 1 second after.
In detail, the trajectory includes four aspects:
• tpi,s represents the sampled s-th trajectory position in the

2D horizontal plane of the i-th frame.
• tdi,s indicates the trajectory direction in the 2D horizontal

plane, which is the facing direction of the character.
• thi,s is a sub-vector contains the trajectory height in line

with the terrain to characterise the geometry information,
which are obtained from three locations regarding the
sampled point including the center, left and right offset.

• tgi,s is a one-hot encoding sub-vector regarding the action
category for the sampled trajectory point. For our loco-
motion settings, we have five action categories including
standing, walking, jogging, jumping and crouching.

3.4 Control Signal-aware Decoder
Based on the past motion embeddings from the multi-scale
motion encoder, a control signal-aware decoder is proposed
to formulate a latent embedding for motion prediction. The
trajectory information is involved by the decoder to attend to
the past encoded motion patterns through a control signal-
aware attention mechanism. This allows the decoded pat-
terns being relevant to the user’s control signals. In detail,
we adopt the trajectory Ti as a query to the past motions:

qDi = TiW
Q,D,KD

i = ZiW
K,D, V D

i = ZiW
V,D, (4)

where W ·,· are projection matrices containing trainable
weights with an output dimension γ. Hereafter, the past mo-
tion information with user control can be summarised into a
vector as follows:

zDi = softmax(
qDi KD

i
⊺

√
γ

)V D
i . (5)

Particularly, we call the attention in Eq. (4-5) as a con-
trol signal-aware attention and multi-heads of it are adopted
with feed-forward networks to characterise the motions from
multiple aspects. For the simplification of notations, we con-
tinue to use zDi to denote this multi-head output.

3.5 Motion Prediction Network
To predict and synthesize the motion of the i-th frame,
which we denote as Yi, an additional motion prediction
network (MPN) component is introduced. Yi contains pose
{(jpi , jvi , jri )}, trajectory Ti+1 and contact information Ci.
Particularly, jri represents local joint rotation additional to
position and velocity. The prediction T̂i+1 of Ti+1 is only
for the trajectory after the i-th frame, where the sampled tra-
jectory points before the current frame already exist. Ci is a
vector, which indicates the labels of foot contact for each
heel and toe joint of the two feet. It can be used to per-
form Inverse Kinematics (IK) post-processing to better fit
the character with terrain geometry.



Our MPN is based on feed-forward layers with Expo-
nential Linear Unit (ELU) activation function (Clevert, Un-
terthiner, and Hochreiter 2015). In detail, we have an esti-
mation Ŷi of Yi:

Ŷi = MPN(zDi , Ti), (6)

where the decoded output and motion trajectory are consid-
ered as the input. Note that the trajectory information is also
used for MPN besides the decoder, which helps the control
signals to be fully formulated for providing highly respon-
sive motion synthesis.

3.6 MCS-T Training and Runtime Inference

By defining the computations of the proposed MCS-T as
a function F with trainable parameters Θ, where Ŷi =
F(Xi, Ti). A mean squre error (MSE) loss with ℓ1 regu-
larization is adopted to optimize Θ. In detail, we solve the
following optimization problem during the training:

argmin
Θ

∥ Yi −F(Xi, Ti;Θ) ∥22 +λ|Θ|, (7)

where λ is a hyper-parameter controlling the scale of the
regularization.

In terms of the runtime inference, a trajectory blending
scheme is adopted for post-processing. In detail, the trajec-
tory positions t̂di+1,s and directions t̂di+1,s, s = s0, ..., sS−1,
after the i-th frame are further blended with the user control
signal for the (i+ 1)-th frame’s motion prediction:

tpi+1,s = (1− τps )t̄
p
i+1,s + τds t̂

p
i+1,s,

tdi+1,s = (1− τds )t̄
d
i+1,s + τds t̂

d
i+1,s,

(8)

where t̄i+1,s is the trajectory computed by the user’s con-
trol signal, τps and τds are hyper-parameters to control the
blending level. That is, the user control signal is blended
with higher weights in near trajectory for more responsive
motion, and with lower weights in far trajectory in pur-
suit of smoother transition. In terms of tpi+1,s and tdi+1,s,
s = s−S , ..., s−1, they are in line with the actual existing
trajectory. Additionally, the trajectory height thi+1,s can be
derived based on tpi+1,s within the virtual scene, and the ac-
tion category tgi+1,s is set directly by the user.

4 Experimental Results and Discussions
4.1 Dataset

We evaluate our proposed method on a public dataset
(Holden, Komura, and Saito 2017) for a fair comparison
with the state-of-the-art methods. The dataset consists of
biped locomotion data of various gaits, terrains, facing di-
rections and speeds, which helps evaluate the quality of the
common character motion controller in terms of responsive-
ness and motion transition. A biped character with 31 joints
and MoCap techniques were adopted to collect these data.
In total, we obtained around 4 million samples for training.

4.2 Implementation Details
In total, K = 5 past frames with indices k1 = 1, k2 = 10,
k3 = 20, k4 = 30 and k5 = 40 were selected as input to
predict the motion of the i-th frame. Note that this setting
was found to provide the best quality of prediction (see Sec-
tion 4.5). Two independent transformer-encoders were used
for the fine-level and coarse-level motion sequences, respec-
tively. Each of them consisted of three transformer-encoder
layers using six self-attention heads of a dimension 186 and
the the feed-forward layers were of a dimension 1024. A
dropout rate of 0.1 was applied to the encoders. The trans-
former decoder was using the same configurations as the
encoder. The motion prediction network was modelled as a
three-layer MLP with a hidden dimension 512 and a dropout
rate 0.3. τps = (s/S)0.5 and τds = (s/S)2 were defined for
Eq(8) empirically. (see Supplementary Material for details).

During the training, the input and output were firstly nor-
malised by their mean and standard deviation. Additionally,
the input features related to the joints were all scaled by 0.1,
which helped produce dynamic motions in certain scenarios
to enlarge the proportion of the trajectory related inputs. In
terms of the loss function, λ for ℓ1 regularization was set to
0.01. The model was implemented by PyTorch (Paszke et al.
2019) and trained with an Adam optimisier (Kingma and Ba
2014). The learning rate was set to 10−4 and the batch size
was 32. In total, MCS-T was trained with 20 epochs, which
took around 50 hours on an Nvidia GTX 1080Ti GPU.

4.3 Comparisons with State-of-the-art Methods
Qualitative and quantitative evaluations of MCS-T were
conducted against a number of baseline methods, in terms
of motion quality, especially from the aspects of responsive-
ness and motion transition. The baseline methods include
MLP with a single past pose, MLP with multiple past poses,
RNN (Lee, Lee, and Lee 2018) and PFNN (Holden, Ko-
mura, and Saito 2017) methods. Overall, we show that our
MCS-T was able to produce motions in line with the-state-
of-the-art results with a task-agnostic design and to alleviate
the fundamental issues of the baseline methods. More results
are available in the supplementary material.

MLP with single past pose: We trained an MLP to synthe-
size motion using a single past pose with trajectory informa-
tion. The experimental results show that the overall motion
produced was quite stiff especially when changing the direc-
tion and could have weird artifacts such as floating as shown
in the ceiling scenario in Figure 3. As expected, motion pre-
diction from vague control signal can be difficult without
auxiliary information and various possible predictions can
exist, which leads to an average pose.

MLP with multiple past poses: Similar to the first base-
line, except that additional pose information from multiple
past frames was considered for an MLP. The results show
that the generated motion was improved, as the past frames
provided the auxiliary information implicitly. Nonetheless,
the synthesized motion suffers from the slow motion transi-
tion issue. This problem became obvious when the character
was traversing through rocky terrain as shown in Figure 3.
While it was able to adapt the character motion correctly to



Figure 3: Qualitative results of our MCS-T and other baselines under four scenarios: flat, rocky, obstacles and ceiling. The left
side shows the motions synthesized by MCS-T and the right side provides examples that demonstrate the baseline limitations.

the new geometry, the motion was performed as smooth as
the regular locomotion on a flat terrain. The reason could be
that using several past poses in a simple manner is limited to
the large redundant variations in the past.

RNN: An LSTM architecture (Lee, Lee, and Lee 2018)
was adopted for this biped locomotion dataset. The past
memory enables LSTM to predict motion of higher qual-
ity. Nevertheless, it still suffered from the slow motion tran-
sition issue. As shown in Figure 3, the character could be
floating when transiting between motion and was unable to
jump over the obstacles timely and obviously. The reason
is that the hidden memory prevented the RNN model from
quickly reaching transitional states of a jumping motion.

Phase-functioned neural network: Rather than relying on
past poses to constrain motion prediction, PFNN (Holden,
Komura, and Saito 2017) utilised the foot contact phase for
motion disambiguation. The qualitative results of our MCS-
T were very closely to those of PFNN in a wide range of sce-
narios (see supplementary materials). Our method does not
require the task-specific auxiliary information, which only
relies on the past motion data generally available.

Moreover, to quantitatively evaluate whether the pro-
duced motion is responsive to control signals and transits
to different motions timely, the average joint angle update
per second as a metrics for motion dynamics was compared.
A higher joint angle update represents more dynamic mo-
tion produced and faster transition between frames. The re-
sults are listed in Table 1, which indicate that MCS-T is able
to produce much more agile motion than the task-agnostic
RNN, while being comparable to the task-specific PFNN
(Holden, Komura, and Saito 2017) method.

4.4 Ablation Study

An ablation study was conducted to demonstrate the effec-
tiveness of the multi-scale skeleton representation and the
control signal-aware mechanism in our encoder and decoder,
respectively. The quantitative evaluation is listed in Table 1.

Multi-scale skeletons with an extra middle scale: In addi-
tion to the two skeleton scales, we experimented with one
extra scale called as a middle scale. It aggregated the joints
into a level between the two existing levels. However, the
three-scale scheme did not contribute to the overall perfor-
mance and produced stiff motions especially under scenar-
ios with quick and frequent transitions such as obstacles
and ceiling scene. The potential reason could be that the in-
creased model complexity deteriorates the capability of mo-
tion prediction and produces sub-optimal solution.

Multi-scale skeletons: Without multi-scale skeletons, the
motion dynamics dropped significantly, especially in the ob-
stacles scene. Jumping motion became less responsive and
sometimes the dynamics were too weak to observe. Thus,
incorporating coarse-level skeletons helped exploit the mo-
tion patterns during a transition from a global perspective.

Control signal-aware decoder: Besides the motion pre-
diction network, our decoder is driven by the control sig-
nals as well, which are adopted as the queries of the decod-
ing attentions. Alternatively, by simply using a conventional
self-attention mechanism to construct this decoder, it led to
less motion dynamics. The most obvious case is in the ceil-
ing scenario, where the motion appeared to be jittery and
unstable during the transition between the walking and the
crouching in the ceiling scenario.



Flat Rocky Obstacles Ceiling Average
Method Phase Full Arm Leg Full Arm Leg Full Arm Leg Full Arm Leg Full Arm Leg
PFNN ✓ 106.5 100.6 135.9 128.7 145.0 156.0 109.1 110.9 143.9 139.9 130.9 187.0 121.1 121.9 155.7
MLP w/ Single Pose % 71.5 65.4 90.2 86.5 90.3 110.5 78.7 71.2 108.9 109.7 103.7 142.0 86.6 82.7 112.9
MLP w/ Multiple Poses % 94.0 88.1 122.7 95.2 91.3 131.0 85.7 76.3 122.6 115.1 100.8 161.8 97.5 89.1 134.5
RNN % 83.3 78.4 107.1 83.2 76.4 115.5 85.5 80.4 122.3 123.7 107.9 174.2 93.9 85.8 129.8

MCS-T (ours) % 110.9 107.5 142.8 126.7 149.0 151.6 116.1 121.4 150.7 140.0 137.0 184.6 123.4 128.7 157.4
+ Middle scale % 105.5 101.6 135.4 109.2 117.2 140.8 104.6 108.6 140.1 122.0 111.5 164.5 110.3 109.7 145.2
- Multi-scale skeleton % 96.3 87.6 127.1 112.6 123.8 143.4 91.9 89.4 127.2 124.1 114.1 167.1 106.2 103.7 141.2
- Control signal-aware attention % 94.6 87.7 125.2 105.6 109.1 140.2 90.7 85.2 129.3 137.5 145.8 173.7 107.1 107.0 142.1

Table 1: Quantitative comparison in terms of the average joint angle update per second (degree/s) ↑ for different methods
including MCS-T under four motion scenarios: Flat, Rocky, Obstacles, and Ceiling. The angle updates are further divided into
full body with all joints, arm and leg joints. The highest value is in bold and the second highest value is underlined.

Figure 4: Visualization of the attention map of MCS-T,
where the first layer of the decoder is shown, including (a)
transitional and (b) non-transitional scenarios. The x-axis
represents the past motion indices and the y-axis indicates
the 6 attention heads.

4.5 Multi-scale and Control Signal-aware Motion
Attentions

Our experiments show that MCS-T is able to synthesize mo-
tions with the highest quality and alleviate the slow transi-
tion issue. This lies in the attention mechanisms of MCS-T,
which adaptively addresses the sequential motion context.
The attention map of the decoder’s first layer is visualised
in Figure 4 to show how MCS-T performs attentions for dif-
ferent cases. Figure 4 (a) is for a frame of motion transi-
tion from a jumping state to a jogging state. Most attention
heads focused on the fine-level skeletons, especially in more
recent frames, as the further past frames were not very rel-
evant during this motion transition. Additionally, two atten-
tion heads paid even attentions to the coarse-scale motion,
which learned global motion patterns for faster motion tran-
sition. Figure 4 (b) is for a non-transitional case where the
character remains the jogging state, the attentions are evenly
distributed on all positions of the past poses, especially with
more attention heads focusing on the coarse-level. The rea-
son could be that the coarse motion sequence provides suf-
ficient spatio-temporal patterns for predicting this kind of
motions with strong recurring patterns.

4.6 Limitations & Future Work
There are two major limitations of our proposed MCS-T.
First, our MCS-T method may not always synthesize the
beam walking motion well. For example, as shown in Fig-

Figure 5: Illustration of a limitation of MCS-T, where the
hand balancing motion is not well synthesized when the
character is walking on a beam.

ure 5, informed by the special terrain geometry, the character
performed a hand balancing motion. However, MCS-T did
not always launch this motion. It could be due to the small
percentage of beam walking motion in the training data (2̃%)
and imbalance learning strategies should be considered. Sec-
ond, since MCS-T exploits the past motion history, the er-
ror accumulation could happen with a very low chance. The
character motion could get stuck in weird poses for a very
short period but can escape from it by providing new con-
trol signals. Robust noise-based learning could be conducted
for alleviating such error accumulation. In our future work,
besides addressing these limitations, we will investigate an
adaptive strategy for selecting past frames, such as exploring
network architecture search (NAS) (Zimmer, Lindauer, and
Hutter 2021) and token evaluation strategies.

5 Conclusion

In this paper, we present MCS-T as a transformer-based
task-agnostic character motion control method. With multi-
scale graph representation, it aims to produce responsive and
dynamic motions without explicitly using auxiliary informa-
tion. Specifically, MCS-T involves an encoder-decoder de-
sign, where the encoder formulates the spaio-temporal mo-
tion patterns of past poses from multi-scale perspectives and
the decoder takes a control signal into account for predict-
ing the next pose. Our experiments on a public dataset have
demonstrated that MCS-T can produce results comparable
to those of the state-of-the-art methods which explicitly us-
ing auxiliary information. We also investigate the limitations
of our method for future improvement.
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Popović, Z. 2010. Motion fields for interactive character
locomotion. In ACM SIGGRAPH Asia 2010 papers, 1–8.
Li, M.; Chen, S.; Zhao, Y.; Zhang, Y.; Wang, Y.; and Tian,
Q. 2020. Dynamic multiscale graph neural networks for
3D skeleton based human motion prediction. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
214–223.
Li, P.; Aberman, K.; Zhang, Z.; Hanocka, R.; and Sorkine-
Hornung, O. 2022. GANimator: Neural Motion Synthesis
from a Single Sequence. arXiv preprint arXiv:2205.02625.
Li, Z.; Zhou, Y.; Xiao, S.; He, C.; Huang, Z.; and Li,
H. 2017. Auto-conditioned recurrent networks for ex-
tended complex human motion synthesis. arXiv preprint
arXiv:1707.05363.
Ling, H. Y.; Zinno, F.; Cheng, G.; and Van De Panne, M.
2020. Character controllers using motion vaes. ACM Trans-
actions on Graphics, 39(4): 40–1.
Liu, Z.; Lyu, K.; Wu, S.; Chen, H.; Hao, Y.; and Ji, S. 2021.
Aggregated multi-gans for controlled 3D human motion pre-
diction. In AAAI Conference on Artificial Intelligence, vol-
ume 35, 2225–2232.
Liu, Z.; Zhang, H.; Chen, Z.; Wang, Z.; and Ouyang, W.
2020. Disentangling and unifying graph convolutions for
skeleton-based action recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 143–152.
Mao, W.; Liu, M.; and Salzmann, M. 2020. History repeats
itself: Human motion prediction via motion attention. In Eu-
ropean Conference on Computer Vision, 474–489. Springer.
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