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Figure 1: Adaptive affine transformation can be used for misaligned image generation, including talking face generation, face
reenactment, pose transfer, person image generation and so on.

ABSTRACT
One challenging problem, named spatial misaligned image gen-
eration, describing a translation between two face/pose images
with large spatial deformation, is widely faced in tasks of face/pose
reenactment. Advanced researchers use the dense flow to solve
this problem. However, under a complex spatial deformation, even
using carefully designed networks, intrinsical complexities make
it difficult to compute an accurate dense flow, leading to distorted
results. Different from those dense flow based methods, we propose
one simple but effective operator named AdaAT (Adaptive Affine
Transformation) to realize misaligned image generation. AdaAT
simulates spatial deformation by computing hundreds of affine
transformations, resulting in less distortions. Without computing
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any dense flow, AdaAT directly carries out affine transformations
in feature channel spaces. Furthermore, we package several AdaAT
operators to one universal AdaAT module that is used for differ-
ent face/pose generation tasks. To validate the effectiveness of
our AdaAT, we conduct qualitative and quantitative experiments
on four common datasets in the tasks of talking face generation,
face reenactment, pose transfer and person image generation. We
achieve state-of-the-art results on three of them.1
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1 INTRODUCTION
Rapid development of deep learning promotes areas of media pro-
duction, including talking face generation [2, 3, 7, 11, 24, 26, 41, 48,
50, 56–58], face reenactment [29, 33, 34, 44, 45, 51], pose transfer
[15, 28, 36], person image generation [30, 31, 35, 38, 39] and so
on. These tasks attract increasing researchers due to broad and
interesting applications.

One common challenging problem on these tasks, named spatial
misaligned image generation, is first proposed in [35]. As shown
in fig. 2 (b), this problem describes the translation between two
images (e.g. facial images, human images, etc.) with a large spatial
deformation. Compared with the spatial aligned image generation
(shown in fig. 2 (a)), misaligned condition is more difficult and can
not be coped with well by traditional CNN based networks[6, 35],
such as U-net[32].

Researchers make great efforts on solving this challenging prob-
lem. Recent advanced works [29, 39, 45, 47, 51, 52] propose several
dense flow based frameworks to realize misaligned image genera-
tion. Specifically, they first utilize carefully designed networks to
compute a dense flow. Then, they warp image feature maps with
the dense flow in all the feature spaces (as shown in Fig 3 (a)).
Finally, they synthesize images with aligned features. However,
under a complex spatial deformation, intrinsical complexities make
it difficult for networks to compute an accurate dense flow, lead-
ing to distorted results (see the synthetic results of X2face[47] and
PIRender [29] in Fig 7).

In this paper, we first propose one operator named AdaAT (Adap-
tive Affine Transformation) to replace the dense flow in realizing
misaligned image generation. Due to two advanced designs, AdaAT
is effective but simple. In the first design, AdaAT computes hundreds
of affine transformations to simulate the sophisticated spatial de-
formation, like adding a regularization term on deformations, thus
avoids synthesizing distorted results. Some other works [10, 34, 44]
also utilize affine transformations, but the number of transforma-
tions is restricted between 10 and 20. By contrast, our AdaAT has
a stronger capacity for simulating complex spatial deformation
by computing affine transformations at least 100 times more than
them. In the second design, without designing complex networks
to compute spatial dense flow, AdaAT directly carries out affine
transformations in feature channel spaces, leading to a very simple
structure. As shown in Figure 3 (b), to align the image features,
AdaAT first computes the parameters of the affine transformation
for each feature channel, and then perform different affine trans-
formations in different feature channels.

We further package several AdaAT operators to one AdaAT
module that can be used for different face/pose generation tasks.
The details of AdaAT Module are shown in Fig 4. We conduct ex-
periments with the AdaAT module on the tasks of talking face
generation, face reenactment, pose transfer and person image gen-
eration. We conduct qualitative and quantitative experiments on
four common datasets and achieve the state-of-the-art results on
three of them. As shown in Fig 1, our AdaAT module is effective in
dealing with the problem of spatial misaligned image generation.

We summarize our contributions as follows:

• We propose one simple but effective operator named AdaAT
to solve the problem of spatial misaligned image generation.
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Figure 2: Differences between spatial aligned image genera-
tion (a) and spatial misaligned image generation (b).

• We design one AdaAT module that can be used for different
tasks of face/pose generation.

• To validate the effectiveness of our AdaAT, we conduct ex-
periments on four common datasets in the tasks of talking
face generation, face reenactment, pose transfer and person
image generation, and achieve the state-of-the-art results on
three of them.

2 RELATEDWORK
In this section, we first briefly introduce the concept of spatial
aligned andmisaligned image generation. Then, we reviewworks in
the tasks of talking face generation, face reenactment, pose transfer
and person image generation.

Alignment v.s. misalignment. Fig. 2 illustrates the differences
between two conditions in image generation: spatial alignment and
spatial misalignment. The first condition (shown in Fig. 2 (a)) re-
quires the source image and the synthetic image have aligned spatial
semantics. Many works [4, 9, 25, 27, 42, 43] focus on solving prob-
lems under this condition. [9] first proposes one pix2pix framework
to realize image-to-image translation. To further improve visual
quality of synthetic images, [4, 27, 43] utilize cascade structure and
coarse-to-fine training strategy. [25] proposes one SPADE operation
to improve visual fidelity and [42] utilizes a dense flow to improve
smoothness in video synthesis. The second condition (shown in
Fig 2 (b)), spatial misalignment, however, only requires the source
image and the synthetic image from the same identity. This condi-
tion is more challenging [6, 35] and is widely faced in the tasks of
talking face generation, face reenactment, pose transfer and so on.
Advanced researchers[15, 28, 29, 31, 33–36, 38, 39, 41, 44, 45, 51, 56]
propose varied dense flow based frameworks to solve this condition.
We will introduce these works, respectively, according to different
tasks.

Talking face generation In one-shot talking face generation,
recent works leverage intermediate facial representations, including
facial landmarks [2, 3, 5, 58], facial key points [40, 41] and 3DMM
[48, 56], to split a pipeline into two cascade modules. The first mod-
ule produces facial animation parameters (lip, eyebrow and head)
from driving audio. The second module converts facial animation
parameters into talking face videos. In the second module, driv-
ing head motion in the reference face encounters the problem of
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misaligned image generation. Some works [3, 5, 58] ignore this
problem, leading to synthesize talking head videos with a static
head pose. Other works [40, 41, 56] propose dense flow based net-
works to synthesize talking videos with head movements. However,
computing accurate dense flow is difficult, e.g., [56] uses two masks
and three networks to compute dense flow with flaws.

Face reenactment In face reenactment, early works [49, 54]
disentangle facial appearance and facial structure with landmarks
to avoid the problem of spatial misalignment. However, due to im-
perfect disentanglement, their methods have poor generalization.
Recent advanced works [29, 45, 47, 51] propose dense flow based
frameworks to realize face reenactment. However, they synthesize
distorted facial image under extreme head movements due to diffi-
culties in computing an accurate dense flow. Other works [34, 44]
utilize affine transformations to simulate spatial deformation to
avoid synthesizing distorted results. However, the number of trans-
formations is limited in their methods. Our AdaAT computes affine
transformations at least 100 times more than them.

Pose transfer&Person image generation In pose transfer and
person image generation, the direct exposed problem is misaligned
image generation, so researchers [6, 14, 15, 28, 31, 35, 36, 39] design
diverse dense flow based frameworks to synthesize person image.
The dense flows is computed from unsupervised body parts [36],
parametric statistical human body model [14, 15] or key joint points
[6, 14, 28, 31, 35, 39]. Computing accurate dense flow is difficult, so
local&global region fusion [31, 39] and multi resolution [28] need
to be considered to improve the quality of dense flow.
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Figure 3: Comparison between the dense flow based meth-
ods and our AdaAT in the feature map spaces. (a) Dense
flow based methods. Pseudo color represents dense flow. (b)
AdaAT. Different colors represent different affine transfor-
mations.

3 METHOD
3.1 Adaptive Affine Transformation Operator
AdaAT is proposed to deal with the problem of misaligned image
generation. To facilitate understanding, we first briefly introduce
the basic knowledge of dense flow [29, 39, 45, 47, 52]. Then, we
introduce the details of AdaAT. Figure 3 (a) illustrates how the dense
flow works. The pseudo color maps represent the dense flow and
describe the spatial motion direction (the white arrow) of each pixel

between two frames. With warping operations at the same position
across all channels, the feature maps realize spatial alignment.

Different from the dense flow based methods, our AdaAT real-
izes feature spatial alignment through different spatial affine trans-
formations in different feature channels. The details of AdaAT is
illustrated in Figure 3 (b). After the AdaAT operation, the follow-
ing convolutional layers merge all affine transformations into one
sophisticated spatial deformation.We compute different affine trans-
formations in different feature channels (the yellow, green and blue
parts in the figure). Assume one image feature map 𝐹 ∈ 𝑅𝐶×𝐻×𝑊 ,
where 𝐶 , 𝐻 ,𝑊 represent the channel size, height and width re-
spectively. AdaAT computes a set of affine transformation matrix
𝐴 = {𝐴𝑐 ∈ 𝑅2×3}𝐶

𝑐=1 according to the number of feature channels.
For the 𝑐𝑡ℎ channel in feature maps, the affine transformation is
written as [

𝑥𝑐
𝑦𝑐

]
= 𝐴𝑐


𝑥𝑐
𝑦𝑐
1

 , (1)

where 𝑥𝑐/𝑥𝑐 and 𝑦𝑐/𝑦𝑐 are coordinates before/after affine transfor-
mation. Traditional affine transformation has 6 parameters, con-
trolling the transformation of scale, rotation, shear and transla-
tion. In our experiments, to facilitate the convergence of networks,
we discard shear tranformation and only compute 4 parameters
of scale 𝑠 ∈ (0, 2), rotation 𝜃 ∈ (−𝜋, 𝜋) and translation 𝑡𝑥 /𝑡𝑦 ∈
(−𝑊 /𝐻,𝑊 /𝐻 ) in each channel. The affine transformation matrix
is denoted as

𝐴𝑐 =

[
𝑠𝑐𝑜𝑠 (𝜃 ) 𝑠 (−𝑠𝑖𝑛(𝜃 )) 𝑡𝑥
𝑠𝑠𝑖𝑛(𝜃 ) 𝑠𝑐𝑜𝑠 (𝜃 ) 𝑡𝑦

]
. (2)

3.2 Adaptive Affine Transformation Module
We package several AdaAT operators to one AdaAT module for
misaligned face/pose image generation in the generalized appli-
cations. The structural details of AdaAT module is illustrated in
Figure 4. Due to widely used key points (facial landmarks and
pose joints) in different face/pose generation tasks, AdaAT module
takes one source image 𝐼𝑠 , one source heatmap image 𝐼ℎ𝑚𝑠 and one
driving heatmap image 𝐼ℎ𝑚

𝑑
as input. Then, 𝐼𝑠 , 𝐼ℎ𝑚𝑠 and 𝐼ℎ𝑚

𝑑
are

concatenated and input into one appearance encoder to extract the
appearance feature map 𝐹𝑎𝑝𝑝 . Then, 𝐹𝑎𝑝𝑝 is input into one transfor-
mation encoder to compute the affine transformation parameters of
scale 𝑝𝑠 , rotation 𝑝𝜃 and translation 𝑝𝑡𝑥 /𝑝𝑡𝑦 . Then, with equations
1 and 2, affine transformations are employed on 𝐹𝑎𝑝𝑝 to generate
the aligned feature map 𝐹

𝑎𝑝𝑝

𝑎𝑙𝑖𝑔𝑛
. To better simulate a sophisticated

spatial deformation, two AdaAT operators and three convolutional
layers are used alternately in feature alignment. We utilize one
AdaIN [8] operation on 𝐹

𝑎𝑝𝑝

𝑎𝑙𝑖𝑔𝑛
to add textural details. Finally, the

aligned feature maps 𝐹𝑎𝑝𝑝
𝑎𝑙𝑖𝑔𝑛

are input into one appearance decoder
to synthesize the output image. The details of AdaAT module are
in supplementary materials.

3.3 Loss Function
When training the AdaAT module, we use the LSGAN loss [21]
𝐿𝐺𝐴𝑁 and the perceptual loss [12] 𝐿𝑝𝑒𝑟𝑐 . The LSGAN loss is the
patch GAN loss as same as in [34, 44, 56]. The perceptual loss is a
two-scale loss as same as in [34, 44]. The final loss 𝐿 is written as
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Figure 4: AdaAT module Illustration. 𝑐 denotes 𝑐𝑡ℎ channel.

𝐿 = 𝐿𝐺𝐴𝑁 + 𝜆𝑝𝑒𝑟𝑐𝐿𝑝𝑒𝑟𝑐 , (3)

where 𝜆𝑝𝑒𝑟𝑐 represents the weight of perceptual loss and we set
𝜆𝑝𝑒𝑟𝑐 = 5.

4 EXPERIMENTS
We conduct experiments on the tasks of talking face generation,
face reenactment, pose transfer and person image generation to
validate the effectiveness of AdaAT operation and AdaAT module.
In this section, we first introduce the dataset and implementation
details in our experiments. Next, we show the synthetic results
and carry out quantitative and qualitative comparisons with other
state-of-the-art works under different face/pose generation tasks.
Finally, we conduct an online user study to validate our method
and do an ablation study to evaluate the AdaAT module.

4.1 Dataset
In our experiments, we use four common datasets in face/pose
generation.

HDTF dataset[56]. HDTF dataset is built for talking face gener-
ation with 512× 512 resolution. It contains about 16 hours of videos
with 300 subjects. In our experiment, we synthesize videos with
512 × 512 resolution and randomly select 5% of the HDTF dataset
for testing.

Voxceleb dataset [23]. Voxceleb dataset contains about 352
hours videos with 1251 subjects. We use data processing strategy
as similar as in [34, 45] to crop and resize all videos into 256 × 256
resolution. There are about 22496 training videos and 525 testing
videos.

iPER dataset [16]. The iPER dataset consists of 206 videos with
30 subjects. To realize cross-identity pose transfer, we leverage
SMPL [18] model to disentangle the body shape and pose. As same
as in [15, 28], we select 185 videos for training and 21 videos for
testing. The resolution of all videos is 256 × 256.

DeepFashion dataset [17]. DeepFashion dataset is one popular
dataset in person image generation. We follow the data preprocess-
ing strategy in [38, 59]. There are 101966 training pairs and 8570
testing pairs. All images are cropped into 256 × 176.

4.2 Implementation Details
In the task of talking face generation, our method does not focus on
animation generation while relying on the animation generation
module of [13]. In the task of face reenactment, the cross-identity
face reenactment relies swapping 3DMM parameters of facial ex-
pression and head pose between source face and driving face, in-
spired from [29, 52]. In the stage of facial image generation, we
project 68 3D facial key points to 2D image and then transform
them to a heatmap image. In the task of pose transfer, similar to
face reenactment, we use SMPL model to realize cross-identity pose
transfer. In the stage of human image generation, we project 24 3D
body joints to 2D image and transform them to a heatmap image.
In the task of person image generation, we directly transform 2D
key points to a heatmap image. More implementation details are in
supplementary materials.

5 SYNTHETIC RESULTS
Figure 5 shows the synthetic results of talking face generation, face
reenactment, pose transfer and person image generation. Rows
1 − 3 display frames of 3 different identities driven by the same
audio. Our method has the ability to synthesize the 512×512 talking
head videos. Rows 4 − 9 display the reenacted face/pose frames of
four face/pose images. Due to effective face/pose statistical models
(3DMM and SMPL), our method has the ability to realize cross-
identity face/pose reenactment. Rows 10 − 11 display synthetic
person images with large spatial deformation. It validates the effec-
tiveness of our method in misaligned image generation.

We further visualize image feature maps before and after the
1𝑠𝑡 AdaAT operation in Figure 6. Figure 6 draws the feature maps
and corresponding source/synthetic images. In AdaAT, different
channels tend to encode different semantic or spatial aware fea-
tures instead of similar spatial layouts, and the feature maps make
rich affine transformations. We propose one view to explain this
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Figure 5: Synthetic results of our method. More results are in demo video.

phenomenon. To realize misaligned image generation, different
spatial regions need to conduct different spatial deformation. In
each channel of AdaAT, full spatial region does the same affine
transformation. To achieve misaligned image generation, different
channels need to encode the features of different spatial regions.

5.1 Comparison with State-of-the-art Works
We also compare our method with state-of-the-art works in the
tasks of taking face generation, face reenactment, pose transfer and
person image generation.
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Figure 6: The image feature maps before and after 1𝑠𝑡 AdaAT.
More feature maps are in supplementary materials.
5.1.1 Talking Face Generation. In the task of talking face genera-
tion, we compare our method with AVTG [3], RhyHead [2], wav2lip
[26], MakeItTalk [58], PC-AVS [57] and FGNet [56]. Figure 7 shows
the qualitative results. AVTG[3] and RhyHead[2] are limited in
synthesizing 128 × 128 videos. Our method synthesizes 512 × 512
videos. wav2lip[26] only focuses on repairing the mouth region.
Our method synthesizes talking videos with expression/head move-
ments. MakeItTalk[58] neglects the problem of misaligned image
generation, so their framework synthesizes blurry videos in large
head motions. Our method utilizes AdaAT operators to deal with
large head movements. PC-AVS[57] requires one extra reference
head sequence as head movements which may be mismatched
with the simultaneous speech. Our method synthesizes head move-
ments from speech and are able to reflect the prosody of speech.
FGNet[56] generates distorted face in large head motions due to
inaccurate dense flow. Our method simulates a spatial deforma-
tion with hundreds of affine transformations to avoid synthesizing
distorted results.

We also carry out quantitative comparisons with state-of-the-art
works to validate our method. We reproduce Makeittalk [58], Mon-
keyNet [33] and FGNet [56] on HDTF dataset. Table 1 illustrates the
quantitative results, relying on metrics of SSIM [46] and LPIPS[55].
As observed, our method gets the best visual quality.

5.1.2 Face Reenactment. In the task of face reenactment, we com-
pare our method with X2face[47], Bi-layer[53], FOMM [34] and
PIRender [29]. Figure 7 shows the qualitative comparisons. In Row 1,
under the condition of small head movements, X2face and Bi-layer
synthesize poor visual quality. In Rows 2 − 6, under the condition
of extreme head pose, our method gets better results than FOMM
and PIRender. Compared with PIRender, our method synthesizes
facial images without facial distortion. The main reason is that it is
difficult for networks to compute an accurate dense flow under a
complex spatial deformation. Our method utilizes affine transforma-
tions to regularize the spatial deformation, thus avoids the distorted
results. The results of methods with affine transformations (FOMM
and adaAT) have fewer distortion than the dense flow based meth-
ods (X2face and PIRender), which also verify the effectiveness of
affine transformation. Compared with FOMM, our method synthe-
sizes higher visual quality. The main reason is that the number of
transformations in FOMM is limited to 10, while our AdaAT com-
putes affine transformations at least 100 times more than FOMM.

Table 1: Quantitative comparisons with state-of-the-art
works.

Dataset Method SSIM ↑ LPIPS ↓

HDTF dataset

MakeItTalk [58] 0.8273 0.2135
MonkeyNet [33] 0.8297 0.1184
FGNet[56] 0.8205 0.1402
Ours 0.8421 0.1120

Voxceleb dataset

X2Face [47] 0.7190 0.2400
FOMM [34] 0.7230 0.1220
Bi-layer [53] 0.3190 0.2527
PIRender [29] 0.7325 0.1285
Ours 0.7508 0.1254

iPER dataset

PG2 [20] 0.8540 0.1350
SHUP [1] 0.8320 0.0990
LiquidGAN [15] 0.8400 0.0870
TBN [28] 0.8680 0.0860
Ours 0.8649 0.0893

DeepFashion dataset

PATN [59] 0.7730 0.2533
Intr-flow [14] 0.7780 0.2131
GFLA[31] 0.7900 0.2341
ADGAN[22] 0.7720 0.2256
XingGAN [38] 0.7780 0.2927
BiGraphGAN [37] 0.7780 0.2444
SPGNet [19] 0.7820 0.2105
Ours 0.7952 0.1989

Table 1 shows the quantitative comparisons on voxceleb dataset.
As observed, our method gets the best SSIM.

5.1.3 Pose Transfer. In the task of pose transfer, we compare our
method with PG2[20], SHUP[1], LiquidGAN[15] and TBN [28].
Table 1 shows the quantitative results on iPER dataset. Our method
gets competitive results when compared with previous works. We
further analyze the factors that decrease the visual quality of our
method. The main reason is that iPER datasset has too small data
scale (only 30 identities and 185 training videos), leading to over
fitting of cloth texture on some identities. We show the over fitted
identity in supplementary materials. It indicates that large scale
datasets benefit the training of AdaAT operator.

5.1.4 Person Image Generation. In the task of person image gen-
eration, we compare our method with PATN [59], Intr-flow [14],
GFLA[31], ADGAN[22], XingGAN[38], BiGraphGAN [37] and SPGNet
[19]. Table 1 shows the quantitative results on DeepFashion dataset.
Our method gets the best results. Figure 8 shows the qualitative
results. Compared with previous works, our method synthesizes
person images with more reasonable details (please see the red
rectangle), This may be due to the powerful capabilities of AdaAT
in simulating sophisticated spatial deformation.

5.2 User Study
We conduct an online user study to validate our proposed method.
In the talking face generation, we randomly select six pairs of ref-
erence images and driving audio from the internet. In the face
reenactment, pose transfer and person image generation, we ran-
domly select five pairs of source face/pose and driving face/pose
from test data. 18 volunteers are invited to rate each frame or video
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Figure 7: Qualitative comparisons with state-of-the-art works in face generation.
from 1 (pretty fake) to 5 (pretty real). Higher scores represent more
realistic videos. In the talking face generation, the rating results
are AVTG (3.12), RhyHead (2.71), wav2lip (3.14), MakeItTalk (3.75),
PC-AVS (4.02), FGNet (3.82) and ours (4.07). In the face reenactment,
the rating results are X2Face (1.23), Bi-layer (2.02), FOMM (3.89),

PIRender (3.78) and ours (3.92). In the pose transfer, the rating
results are LiquidGAN(3.91) and ours (3.74). In the person image
generation, the rating results are PATN (1.67), Intr-flow (2.10), GFLA
(1.97), ADGAN (2.13), XingGAN (1.43), BiGraphGAN (2.22), SPGNet
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Figure 8: Qualitative comparisons with state-of-the-art works in pose generation.

Face:

Pose:

Ours w/o

AdaAT & AdaIN

Ours w/o 

AdaAT

Ours w/o 

AdaIN
Ours + dense 

flow
Ours

Face:

Pose:

Ours w/o

AdaAT & AdaIN

Ours w/o 

AdaAT

Ours w/o 

AdaIN
Ours + dense 

flow
Ours

Figure 9: The results of face/pose generation in ablation
study.

(2.35) and ours (2.39). We get the best rating scores except for pose
transfer.

5.3 Ablation Study
We conduct ablation experiments to validate our method. Specifi-
cally, we set 5 conditions in the AdaATmodule: (1) 𝑜𝑢𝑟𝑠 𝑤/𝑜 𝑎𝑑𝑎𝐴𝑇
& 𝑎𝑑𝑎𝐼𝑁 : removing the AdaAT and the AdaIN operation; (2) 𝑜𝑢𝑟𝑠
𝑤/𝑜 𝑎𝑑𝑎𝐴𝑇 : removing the AdaAT operation. (3) 𝑜𝑢𝑟𝑠 𝑤/𝑜 𝑎𝑑𝑎𝐼𝑁 :
removing the AdaIN operation. (4) 𝑜𝑢𝑟𝑠 + 𝑑𝑒𝑛𝑠𝑒 𝑓 𝑙𝑜𝑤 : replacing the
AdaAT with dense flow. (5) 𝑜𝑢𝑟𝑠 : complete AdaAT module. Figure 9
shows the qualitative results in face and pose generation. In condi-
tion 1 & 2, the synthetic images are more blurry than 𝑜𝑢𝑟𝑠 , the main

Table 2: Quantitative results of ablation study.

Method HDTF Voxceleb iPER DeepFashion
SSIM LPIPS SSIM LPIPS SSIM LPIPS SSIM LPIPS

Ours w/o AdaAT & AdaIN 0.817 0.202 0.730 0.147 0.864 0.092 0.773 0.209
Ours w/o AdaAT 0.828 0.127 0.739 0.141 0.863 0.090 0.787 0.204
Ours w/o AdaIN 0.837 0.113 0.742 0.121 0.864 0.089 0.778 0.203
Ours + dense flow 0.783 0.255 0.617 0.353 0.845 0.112 0.762 0.306

Ours 0.842 0.112 0.751 0.125 0.865 0.089 0.795 0.199

reason is that the vanilla network and AdaIN can not handle the
large spatial deformation well. In condition 3, the synthetic images
have poorer textural details, e,g., the hair region, than 𝑜𝑢𝑟𝑠 . One
possible reason is that AdaAT is capable of aligning feature maps by
affine transformations, but is lack of adding extra detailed informa-
tion on the feature maps. In condition 4, the synthetic images are
more blurry and have more distortion than 𝑜𝑢𝑟𝑠 . The main reason
is that it is difficult for networks to compute accurate dense flow
under a complex spatial deformation. Table 2 shows the qualitative
results on four datasets. Our complete method gets the best results.

6 LIMITATION
Our method has many limitations. Our 3DMM can not model eye
motions, so the synthetic images may have wrong line-of-sight
direction in extreme eye poses. Our AdaAT is easy to over fit on
too small dataset, e.g., iPER dataset.

7 CONCLUSION
In this paper, we propose one novel AdaAT operator to solve
the problem of misaligned image generation. We package several
AdaAT operators to one AdaAT module that can be used in the
tasks of head and pose generation. In the dataset of HDTF, voxceleb
and DeepFashion, our method outperforms other works in objec-
tive and subjective comparisons. In the future, we will make great
efforts to solve the above limitations.
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