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A B S T R A C T

Customizing the appearance of game characters according to individual preferences is an important application
in the gaming industry. The traditional solutions such as manual editing within the game engine require much
time and some professional experience. To address this problem, this paper proposes a novel face-swapping
framework to swap real faces onto game characters while maintaining the art style of the game. This approach
helps players speed up the character customization process, as they can input any face and quickly see the
results of swapping it onto the character. Specifically, our framework extracts a more robust identity embedding
from compound face identity models. Then the identity embedding is sent into AdaIN for feature fusion and
changes the identity attribute for the output of the decoder. To maintain the expression consistency between
the swapped and target faces, we utilize a novel expression embedding loss which effectively constrains the
fine-grain expression similarity. To reduce the cross-domain gap between human and game faces, we also
construct a game face dataset and propose to use fine-tuning to improve the image quality of cross-domain
face swapping. Extensive qualitative and quantitative experiments indicate that our method achieves leading
swapping results in both pure natural human faces and game faces datasets.
. Introduction

Game CG videos are animations related to scene characters or plots
n the game produced with the support of computer graphics (CG)
echnology. CG videos are essential for game promotion. To achieve
ersonalized promotion, we propose to use face swapping to gener-
te customized identity-specific CG videos. Given a template video
Target), we can replace the game character face in the video with a
uman face (Source) to obtain a personalized video (Result), and the
esult face is similar in appearance (identity) to the source face but
aintains the attributes of the target faces. However, there are still

everal challenges when directly applying the existing face swapping
ethods to game characters. Firstly, the game character face swapping
eeds to be identity-agnostic, while many works (DeepFakes, 2019;
arekKowalski, 2021) are identity-specific. Secondly, the game charac-

er face swapping is a cross-domain problem, but some identity-agnostic
ethods (Li et al., 2019; Chen et al., 2020; Xu et al., 2021) only focus

n human faces. Third, the game character face and the human face are
rom two different domains, so the identity embedding extracted by a
ingle human-based face recognition model cannot provide sufficient
dentity constraints. In addition, the existing methods without fine-
rained expression constraints will cause inconsistent expressions in
enerated videos.

Considering the above problems, we propose a new face swapping
ethod and make efforts in three aspects to better generalize the

∗ Corresponding author.
E-mail address: dingyu01@corp.netease.com (Y. Ding).

existing methods to the game character faces: solving the cross-domain
problem, preserving the identity consistency (with the source face), and
the expression consistency (with the target face).

To resolve the cross-domain problem, we first train our face swap-
ping model on the human data and then fine-tune the model on the
game face dataset. Since there exists few game face datasets as large
as real human face datasets, training directly on the game dataset will
greatly reduce the robustness and generalization of the model, and fine-
tuning can make full use of the knowledge learned by the model on the
human dataset and does not require a large amount of game data.

In the aspect of identity, prior works (Li et al., 2019; Chen et al.,
2020) utilize the face recognition models to ensure identity consistency.
However, the single extracted identity embedding lacks robustness.
As we observed in Fig. 9, the face identity embedding can be easily
affected by facial attributes (e.g., expressions). Therefore, we pro-
pose the compound multiple identity embeddings, aiming to promote
the stability of the identity embedding and achieve better identity
consistency.

As for the expression, previous methods (Xu et al., 2021; Li et al.,
2019) either use the landmarks or the implicit attribute constraints to
ensure the consistency of expressions. However, these expression rep-
resentations cannot capture subtle facial movements and complicated
expressions. This work proposes an effective operation to introduce
an existing effective expression embedding from DLN (Zhang et al.,
2021b) which represents the identity-invariant and fine-grained human
ttps://doi.org/10.1016/j.cviu.2023.103806
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expressions. We use it as an expression loss to constrain the expression
consistency. Although this embedding is designed for other recognition
or detection tasks, our work is the first to employ it in the face swapping
task and achieve effective results. This paper is an extension of our
previous work (Zeng et al., 2022).

In summary, our main contributions are as follows:

• We propose the first work for game character face swapping task.
By collecting a game character face dataset and applying a fine-
tuning strategy, we manage to translate the face swapping model
from the normal human face to the game face domain.

• We propose an identity compound strategy to improve the iden-
tity consistency between the source and the swapped face images
while preserving the subject’s attributes to be harmonic with the
game character.

• We apply an effective expression embedding as our expression
loss to keep expression similarities with the target faces as close
as possible. Compared to some other expression constraints, it can
effectively perceive fine-grained expression changes.

• We conduct full experiments on both human and game character
faces. The quantitative and qualitative experiments demonstrate
that our results outperform the previous face swapping meth-
ods in terms of cross-domain translation capability, expression
similarities, and identity consistency.

2. Related work

2.1. Face swapping

Face swapping aims to replace a target image’s facial identity with
another one. Research works on this problem can be divided into pixel-
based methods, 3DMM-based methods, and GAN-based methods. The
most straightforward solution for face swapping is to replace the inner
face part in pixel space (Bitouk et al., 2008; Lin et al., 2012; Chen
et al., 2019a). However, the manipulated image patches usually suffer
from attribute mismatch. 3DMM-based methods (Blanz et al., 2004;
Thies et al., 2016; Nirkin et al., 2018) generate the face region by
3D fitting and then the source faces and target backgrounds can be
blended via inverse rendering. More recently, there occurs many GAN-
based methods (DeepFakes, 2019; MarekKowalski, 2021; Petrov et al.,
2020; Natsume et al., 2018a,b; Nirkin et al., 2019; Li et al., 2019; Chen
et al., 2020; Zhu et al., 2020; Xu et al., 2021; Wang et al., 2021; Zhu
et al., 2021; Gao et al., 2021). Specifically, the most popular methods
like Deepfakes (DeepFakes, 2019) and its variants (Petrov et al., 2020;
MarekKowalski, 2021) need to be trained pairwise. FSGAN (Nirkin
et al., 2019) first animate the source face by reenactment and then
blend it into the background with an in-painting and blending network.
FaceShifter (Li et al., 2019) generates a swapped face with high-fidelity
and can handle the occlusions with a second-stage refinement net-
work. SimSwap (Chen et al., 2020) proposes a weak feature matching
loss to improve the facial attributes consistency. FaceController (Xu
et al., 2021) proposes a unified framework for identity swapping and
attribute editing and is the first work that use 3D parameters and
identity embedding to represent facial identity. Later, HifiFace (Wang
et al., 2021) solved the shape inconsistency problem in face swapping
by 3D shape-aware identity to control the face shape with geomet-
ric supervision. InfoSwap (Gao et al., 2021) disentangle identity and
identity-irrelevant information by optimizing an information bottleneck
tradeoff and achieving better identity-discriminative face swapping
results. MegaFS (Zhu et al., 2021) proposes the first-megapixel level
method and can achieve 1024 × 1024 face swapping. FlowFace (Zeng
et al., 2023) and FlowFace++ (Zhang et al., 2023) propose to per-
orm the swapping of face outline shape. The work (Liu et al., 2023)
arries out facial semantic region-based editing for face swapping.
he work (Jiang et al., 2023) makes efforts to identity-preserving by
onstructing a series of identity-preserving bases in respect of pose,
xpression, and illumination.
2

The methods mentioned above are based on human data, so they
annot be applied directly to the game data. Most methods (Li et al.,
019; Chen et al., 2020; Xu et al., 2021; Wang et al., 2021; Zhu et al.,
021) transfer identity with a single identity embedding which may be
ffected by other facial attributes such as facial expressions. In addition,
mplicit attribute constraints (Li et al., 2019; Chen et al., 2020) or
acial landmark loss (Xu et al., 2021; Wang et al., 2021; Zhu et al.,
021) are not able to capture subtle expressions, causing the problem
f expression consistency.

.2. Expression representation

Facial expression plays a vital role in human social communica-
ion (Li and Deng, 2020). However, due to its complicated natural and
ubtle movement, it is non-trivial to represent the accurate expressions
f human faces and thus prevent the downstream tasks such as face
diting and manipulation. Ekman et al. first propose to use seven basic
ategories to represent the human facial emotion (Ekman and Friesen,
971). These categories are the most commonly-used emotion labels
n many facial expression recognition methods (Li et al., 2018; Chen
t al., 2019b; Wang et al., 2020; Mollahosseini et al., 2017; Kervadec
t al., 2018; Happy and Routray, 2014; Kim et al., 2017; Khan et al.,
017; Nguyen et al., 2019). Nevertheless, these categorical expressions
re still a block to many fine-grained expression-related applications,
eing inadequate to characterize all the facial expressions and distin-
uish those facial expressions labeled in the same category. Later it is
mproved by learning a low-dimension nonlinear manifold embedded in
face image space (Vemulapalli and Agarwala, 2019). Compared with
iscrete expression categories, compact representations can describe
ore fine-grained expressions. In fact, the facial expression compact

epresentation (Zhang et al., 2021b) has also been validated for the
ecognition of discrete facial expressions and action units (An et al.,
022; Zhang et al., 2021a, 2022).

In this work, we turn to address the expression consistency manner
nto face swapping framework and adopt a novel expression represen-
ation (Zhang et al., 2021b) which extracts a continuous space based
n expression similarities.

. Method

.1. Framework overview

The framework is shown in Fig. 1. Given one source face image 𝐼𝑠
nd one target face image 𝐼𝑡, it performs face swapping and generates
𝑜 reflecting the attribute information (expression, skin color etc.) of
𝑡 but the identity information of 𝐼𝑠. The framework is built upon a
enerative adversarial network (GAN) (Goodfellow et al., 2014) with
nd-to-end training. Specially, our framework contains five compo-
ents: facial image encoder(𝐸𝑓 ), facial image decoder(𝐷𝑓 ), identity
mbedding module(𝐸𝑖𝑑), expression embedding module(𝐸𝑒𝑥𝑝) and a

multi-scale discriminator (Isola et al., 2017). The face image encoder
𝐸𝑓 is designed to extract multi-scale features of facial attributes (re-
flecting expression, pose, lighting, etc.) 𝑓 𝑖

𝑎𝑡𝑡𝑟 from the target image
𝐼𝑡. The compound identity embeddings {𝑓 1

𝑖𝑑 , 𝑓
2
𝑖𝑑} are extracted with

he identity embedding module 𝐸𝑖𝑑 . The face image decoder 𝐷𝑓 is
ed with 𝑓 𝑖

𝑎𝑡𝑡𝑟 and {𝑓 1
𝑖𝑑 , 𝑓

2
𝑖𝑑}. The discriminator of GAN is a multi-

cale discriminator (Isola et al., 2017) to make the swapped face
mage realistic. In face swapping, 𝐸𝑓 extracts attribute-related 𝑓𝑎𝑡𝑡𝑟 =
𝑓 1
𝑎𝑡𝑡𝑟, 𝑓

2
𝑎𝑡𝑡𝑟, 𝑓

3
𝑎𝑡𝑡𝑟, 𝑓

4
𝑎𝑡𝑡𝑟} from a target image 𝐼𝑡. Next, 𝐸𝑖𝑑 extracts com-

ound identity embeddings {𝑓 1
𝑖𝑑 , 𝑓

2
𝑖𝑑} from a source image 𝐼𝑠. Then,

𝑓 is fed with 𝑓𝑎𝑡𝑡𝑟 and {𝑓 1
𝑖𝑑 , 𝑓

2
𝑖𝑑}, and render facial semantics into the

wapped face 𝐼 .
𝑜
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Fig. 1. Architecture of our proposed framework. The framework mainly consists of five components: facial image encoder(𝐸𝑓 ), facial image decoder(𝐷𝑓 ), identity embedding
module(𝐸𝑖𝑑 ), expression embedding module(𝐸𝑒𝑥𝑝) and a multi-scale discriminator (Isola et al., 2017) and is trained end-to-end.
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.2. Game faces collection

The game faces in our dataset are collected from two sources. On
he one hand, we render face images using a computer graphic engine.

e collect 30 3D models of game characters. Each model is driven to
erform 1000 different facial expressions by traversing its expression
lendshape and pose parameters. The generated expressions are then
endered into the corresponding images separately by the Unity game
ngine (Unity, 2021). This way, we get about 30,000 rendered game
ace images with desired expression diversity. On the other hand, since
he rendered images lack identity diversity, we crawl more game im-
ges from the Internet. To reduce labor costs, we design an automated
iltering method based on face detection, and only the images with
etected faces are retained. To improve the detection accuracy, we use
wo different face detection models (Zhang et al., 2016, 2017) for cross-
alidation. Finally, we obtain about 80,000 game face images with
etter identity diversity.

Finally, we collect a game face dataset containing about 110,000
mages. These images are used to finetune and evaluate our model for
ross-domain face swapping.

.3. Identity consistency

We propose to use compound identity embeddings instead of single
dentity embedding to provide the identity information of 𝐼𝑠. The
ompound identity embeddings are offered by multiple pre-trained face
ecognition models. They provide raw and sufficient identity informa-
ion from different identity recognition models for the decoder 𝐷𝑓 . This
llows for avoiding the bias from a specific identity recognition model.
herefore, the compound strategy allows for refining identity informa-
ion through 𝐷𝑓 . Section 4.4 provides more analysis and discussion
bout the bias of an identity embedding.

To inject the identity information into the decoder 𝐷𝑓 , we replace
he normalization layer in the original residual block (He et al., 2016)
ith the adaptive instance normalization (AdaIN) (Liu et al., 2017a)
s other methods (Li et al., 2019; Chen et al., 2020) done, and then
he identity information (embedding) is mapped to two modulation
ectors (𝛾𝑖𝑑 and 𝛽𝑖𝑑) of the normalization layer in AdaIN with two fully
onnected layers. The difference is that the identity information in our
ethod is from two different models, so we first compound the two

dentity embeddings with a multi-layer perceptron. The formulation is
ritten as:
𝑖 = 𝑃 𝑖(

[

𝑓 1 , 𝑓 2 ]), (1)
𝑖𝑑 𝑖𝑑 𝑖𝑑

3

here 𝑃 𝑖 represents the perceptron in the 𝑖𝑡ℎ block of the decoder. Then
he compound identity 𝑐𝑖𝑖𝑑 is then injected into the intermediate feature
ap with AdaIN:

𝑖
𝑖𝑑 = 𝐹 𝑖

𝛾 (𝑐
𝑖
𝑖𝑑 )

(

𝑍𝑖 − 𝜇(𝑍 𝑖)
𝜎(𝑍𝑖)

)

+ 𝐹 𝑖
𝛽 (𝑐

𝑖
𝑖𝑑 ), (2)

here 𝐹 𝑖
∗ are two fully connected layers in the 𝑖𝑡ℎ block of the decoder

nd 𝑍 𝑖 is the input feature map of the 𝑖𝑡ℎ block.
To recover the details lost due to downsampling, we design a

etail Recover Block (DRB) following Li et al. (2019). In the 𝑖𝑡ℎ De-
ail Recover Block, we first obtain the identity-injected feature 𝑍 𝑖

𝑖𝑑
hrough the injection method in the AdaIN residual block, and then
he corresponding attribute feature 𝑓 𝑖

𝑎𝑡𝑡𝑟 is used to merge with 𝑍 𝑖
𝑖𝑑

daptively with attention. The difference with Li et al. (2019) is that we
ot only use spatial attention but also channel attention. Specifically,
e first inject the 𝑓 𝑖

𝑎𝑡𝑡𝑟 into 𝑍 𝑖 with spatially-adaptive normalization
SPADE) (Park et al., 2019), we slightly modify the SPADE by replac-
ng the batch normalization (Ioffe and Szegedy, 2015) with instance
ormalization (Ulyanov et al., 2016) for comparable performance but
ewer parameters.

𝑖
𝑎𝑡𝑡𝑟 = 𝑇 𝑖

𝛾 (𝑓
𝑖
𝑎𝑡𝑡𝑟)

(

𝑍𝑖 − 𝜇(𝑍 𝑖)
𝜎(𝑍 𝑖)

)

+ 𝑇 𝑖
𝛽 (𝑓

𝑖
𝑎𝑡𝑡𝑟), (3)

where 𝑇 𝑖
∗ are two convolutional layers used to compute modulation

parameters 𝛾𝑎𝑡𝑡𝑟 and 𝛽𝑎𝑡𝑡𝑟 of the normalization layer in SPADE. However,
unlike the vector form parameters in AdaIN, 𝛾𝑎𝑡𝑡𝑟 and 𝛽𝑎𝑡𝑡𝑟 are tensors
with the same spatial dimension as 𝑍𝑖.

Then, we generate the spatial attention mask 𝑀 𝑖
𝑠 and the channel

attention mask𝑀 𝑖
𝑐 from the original input 𝑍 𝑖 with a convolutional block

attention module (CBAM) (Woo et al., 2018).

(𝑀 𝑖
𝑠,𝑀

𝑖
𝑐 ) = 𝐶𝐵𝐴𝑀 𝑖(𝑍 𝑖). (4)

In each convolutional block attention module, the spatial attention
is first computed as following:

𝑀 𝑖
𝑠 = 𝜎

(

CONV([AP(𝐙𝐢);MP(𝐙𝐢)])
)

, (5)

then the channel-wise attention is produced in a similar way:

𝑀 𝑖
𝑐 = 𝜎(MLP(AP(𝐙𝐢)) + MLP(MP(𝐙𝐢))), (6)

where 𝜎 is the sigmoid function, AP and MP represent the average-
pooling layer and the max-pooling layer, respectively. The difference is
that the pooling operation in (5) is along the spatial dimension, while
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Fig. 2. Triplet loss leads to a continuous embedding space for expression repre-
entation.

he pooling operation in (6) is along the channel dimension. The larger
alue in 𝑀 𝑖

𝑠 indicates that the corresponding area is more related to the
dentity, and the larger value in 𝑀 𝑖

𝑐 indicates that the corresponding
eature (channel) is more related to the identity.

Finally, the attribute-injected feature 𝑍 𝑖
𝑎𝑡𝑡𝑟 and the identity-injected

eature 𝑍 𝑖
𝑖𝑑 are fused using the two attention masks:

̂ 𝑖 = 𝑀 𝑖
𝑠 ×𝑀 𝑖

𝑐 ×𝑍 𝑖
𝑖𝑑 + (1 −𝑀 𝑖

𝑠 ×𝑀 𝑖
𝑐 ) ×𝑍 𝑖

𝑎𝑡𝑡𝑟, (7)

here 𝑍̂𝑖 is the output of the 𝑖𝑡ℎ block. With the help of the two masks,
eatures not related to the identity are recovered by attribute features.

.4. Expression consistency

Some previous methods (Li et al., 2019; Chen et al., 2020) treat the
xpression as the same as other attributes and achieve consistency of
xpressions through an implicit constraint on attribute features. Some
ther methods use facial landmarks (Nirkin et al., 2019; Xu et al.,
021; Zhu et al., 2021) to characterize and constrain expressions. We
rgue that attribute features cannot obtain some subtle expressions
ince they contain many other attributes like pose, skin color, etc. The
acial landmark is related to the identity, which may harm the identity
onsistency.

To avoid problems in previous methods and achieve better expres-
ion consistency, our 𝐸𝑒𝑥𝑝 leverages an existing expression embedding
echnique (Zhang et al., 2021b). As shown in Fig. 2, the expression
mbedding model is trained on FEC dataset (Vemulapalli and Agar-
ala, 2019) that contains a large number of expression triplets from
ultiple identities. Therefore, the expression embedding can represent

ine-grained and identity-invariant facial expressions.
In training, 𝐸𝑒𝑥𝑝 first extracts expression embeddings of target and

wapped images. Then an expression loss is defined by calculating the
uclidean distance between two expression embeddings. In this way, we
an achieve better expression consistency. Although the used expres-
ion embedding is designed to represent the expressions in the previous
orks on recognition or detection, no other work in the face-swapping

ield has realized the effectiveness of this feature. Incorporating this
xpression constraint into our work is one of the key factors that
ontribute to our good performances.

.5. Loss function

This section details the supervision in the training, including re-
onstruction loss, identity loss, expression loss, and cycle consistency
oss.
Reconstruction Loss: During training, we make 𝐼𝑠, and 𝐼𝑡 the same

with a certain probability and expect the generated image 𝐼𝑜 to be as
ame as the input. So we introduce a pixel-wise reconstruction loss
ollowing Li et al. (2019). The reconstruction loss is written as

= ‖𝐼 , 𝐼 ‖ , (8)
𝑟𝑒𝑐 ‖ 𝑜 𝑡‖2 w

4

Fig. 3. Comparison of game character results generated by our face swapping method
and manual method.

Table 1
Quantitative comparison on game character faces.

Method ID retrieval accuracy (%) ↑ FID ↓ Expression Error ↓

CosFace ArcFace2 SphereFace DFER FECNet DLN

FSGAN 49.21 52.37 55.61 71.32 4.13 0.28 0.45
FaceShifter 95.73 98.54 97.72 66.49 4.09 0.35 0.41

Ours 98.76 99.68 99.15 28.95 3.69 0.21 0.25

where ‖∗‖2 denotes the euclidean distance. In our experiment, we set
the probability to 0.25.

Identity Loss: An identity loss is usually used in face swapping
tasks. The loss enforces 𝐷𝑓 to acquire identity information from in-
jected compound identity embeddings. Due to compound identity em-
beddings for injection, the identity loss is also based on two face
recognition models (ArcFace and FaceNet):

𝑖𝑑 =
𝐾
∑

𝑘=1
𝜆𝑘(1 − 𝑐𝑜𝑠(𝐸𝑖𝑑 (𝐼𝑜), 𝐸𝑖𝑑 (𝐼𝑠))), (9)

where 𝜆𝑘 represents the relative weight of each face recognition model
and 𝑐𝑜𝑠(∗, ∗) denotes the cosine similarity of two identity embeddings.
In our experiments, we set K=2 and 𝜆1 = 10, 𝜆2 = 5 for ArcFace and
FaceNet respectively.

Expression Loss: To make the expression of the swapped face 𝐼𝑜
more consistent with the target face, we adopt an expression loss that
penalizes the 2 distance of two expression embeddings.

𝑒𝑥𝑝 =
‖

‖

‖

𝐸𝑒𝑥𝑝(𝐼𝑜), 𝐸𝑒𝑥𝑝(𝐼𝑡)
‖

‖

‖2
. (10)

The expression loss encourages the generator to learn to acquire
expression-related information from target faces other than some un-
related disturbance like identity.

Cycle Consistency Loss: In addition to expression and identity, it
is also important to guarantee that the swapped face properly preserves
the attributes of the target face. To do this, we introduce a cycle
consistency loss (Choi et al., 2018):

𝑐𝑦𝑐𝑙𝑒 =
‖

‖

‖

𝐼𝑜, 𝐼𝑡
‖

‖

‖1
, (11)

where 𝐼𝑜 = 𝐷𝑓 (𝐸𝑓 (𝐼𝑜), 𝐸𝑖𝑑 (𝐼𝑡)) and ‖∗‖1 denotes the 1 distance. This
bjective encourages the generator to learn to preserve the original
ttribute of 𝐼𝑡 while only changing its identity.
GAN Loss. To make the synthesized facial images more realistic,

dversarial training is employed. Specifically, we adopt Hinge loss (Lim
nd Ye, 2017) as the adversarial loss, denote as 𝐿𝑎𝑑𝑣.
Full objective: Our full objective can be summarized as:

= 𝑎𝑑𝑣 + 𝑖𝑑 + 𝜆𝑒𝑥𝑝𝑒𝑥𝑝 + 𝜆𝑟𝑒𝑐𝑟𝑒𝑐 + 𝜆𝑐𝑦𝑐𝑙𝑒𝑐𝑦𝑐𝑙𝑒, (12)
here 𝜆𝑒𝑥𝑝, 𝜆𝑟𝑒𝑐 , 𝜆𝑐𝑦𝑐𝑙𝑒 are hyperparameters for each term.
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Fig. 4. Game character face swapping comparison with FSGAN (Nirkin et al., 2019)
nd FaceShifter (Li et al., 2019). Some expression errors and occlusion errors are
ighlighted and marked with red and green boxes, respectively. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

Table 2
FLOPs and the number of parameters comparisons of our method and some other
available methods. Some of the compared methods only have the unofficial code.

Method FLOPs (G) Parameters (M)

SimSwap (Chen et al., 2020) 70.59 107.24
HifiFace (Wang et al., 2021) 71.60 146.78
FSGAN (Nirkin et al., 2019) 305.48 75.96
FaceShifter (Li et al., 2019) 41.63 228.23
Ours 59.30 102.63

4. Experiments

4.1. Datasets and settings

We construct two datasets for our task, one is called HFDataset for
the human face swapping, and the other is called GFDataset for game
face swapping. HFDataset is a combination of three public datasets
including CelebA-HQ (Karras et al., 2017), FFHQ (Karras et al., 2019),
and VGGFace2 (Cao et al., 2018). As for GFDataset, images are col-
lected by the method described in Section 3.2. For each image in the
two datasets, we aligned and cropped the face to 256 × 256 with a face
detector (Zhang et al., 2017). HFDataset is only used for training, and
GFDataset is split into finetuning set and evaluation set.

Our model is trained on HFDataset from scratch and finetuned on
GFDataset. The framework is implemented with PyTorch (Paszke et al.,
2019). We adopt Adam (Kingma and Ba, 2014) optimizer with 𝛽1 = 0
nd 𝛽2 = 0.999 and the learning rate is set to 0.0001. We set 𝜆𝑒𝑥𝑝 = 5,
𝑟𝑒𝑐 = 10, 𝜆𝑐𝑦𝑐𝑙𝑒 = 10 for our full pipeline and our model is trained first
bout 550K steps and then finetuned about 200K steps with a batch
ize of 4.

As shown in Table 2, our framework has a computing complexity
f 59.30G floating point operations (FLOPs) and 102.63M parameters.
ompared to other available methods, our method has comparable
equirements in terms of parameters and computational time, relatively
ower FLOPs and a relatively smaller number of parameters.

.2. Comparison on game character faces

We conduct qualitative and quantitative comparisons with the ex-
sting methods to validate our method on game character faces.
5

Table 3
Quantitative comparison on FF++.

Method ID retrieval accuracy (%)↑ Pose
Error↓

Expression Error↓

CosFace ArcFace2 SphereFace DFER FECNet DLN

Deepfakes 83.70 81.79 87.18 4.30 5.02 0.56 0.73
FaceSwap 71.45 64.04 77.01 2.65 4.35 0.42 0.58
FSGAN 48.90 49.37 53.85 2.72 4.02 0.29 0.42
FaceShifter 86.83 90.77 81.37 2.71 4.03 0.36 0.49
Ours 97.66 98.84 98.31 2.56 3.61 0.21 0.28

4.2.1. Qualitative comparison
We first compare our method with the Manual method. The Manual

method usually tasks a skilled game player with several hours to edit
the hundreds of face parameters to create a character that looks like
the source face. As shown in Fig. 3, our face swapping method can
produce comparable results to the Manual method in less than one
second. As for face swapping methods, we compare our method with
FSGAN (Nirkin et al., 2019) and FaceShifter (Li et al., 2019). We first
obtain the official pre-trained model of FSGAN and then reproduce
the first stage of FaceShifter. As shown in Fig. 4, FSGAN suffers from
unpleasant illumination and face color since FSGAN adopts a blending
model to fuse the swapped face with the background. When the source
and target face have considerable differences in texture, lighting, or
skin color (just like the difference between a game character face and
a human face), such a fusion method will cause this attribute mismatch.
Moreover, the swapped faces of FSGAN look less similar to the source
face than our method. FaceShifter also has problems in cross-domain
face swapping, and the expression is affected by the source face. It
can also be observed that FaceShifter, without its refinement network
cannot handle the occlusions well, but our method can, even if we are
a one-stage method.

4.2.2. Quantitative comparison
We further perform the quantitative comparison with FSGAN and

FaceShifter on the game character faces. We construct a test set that
contains 10K human-game face pairs for human-to-game face swap-
ping. Three types of evaluation metrics are taken into account, includ-
ing identity retrieval accuracy, expression error, and Frechét inception
distance (Heusel et al., 2017).

ID retrieval accuracy is used to estimate the identity consistency.
pecifically, a face recognition model extracts identity embedding from
wapped images. Then, identity retrieving is performed in the corre-
ponding test set with the nearest cosine distance of identity embed-
ing. In our work, the estimation relies on three face recognition mod-
ls including CosFace (Wang et al., 2018; Wang, 2018), ArcFace2 (Deng
t al., 2019; TreB1eN, 2018) and SphereFace (Liu et al., 2017b; Liu,
018). As shown in Table 1, our method obtains the highest accu-
acy, which proves the use of compound identity embeddings guar-
ntees robustness in identity transferring and contributes to identity
onsistency.
Expression error is used to evaluate the expression distance be-

ween the swapped and the target faces. We metric this error by
omputing the euclidean distance between the swapped face expression
mbedding and the target face expression embedding. The expres-
ion embedding can be obtained from a discrete facial expression
ecognition model (DFER) (WuJie, 2020) trained on Goodfellow et al.
2013) and Lucey et al. (2010) or two continuous facial expression
ncoder models (DLN (Zhang et al., 2021b) and FECNet (Vemulapalli
nd Agarwala, 2019)). As shown in Table 1, our method obtains the
owest expression errors in three expression metrics, illustrating our
uperiority in expression consistency.
Frechét inception distance is used to measure the discrepancy

etween two sets of images. We use the final average pooling fea-
ures of an Inception-V3 (Szegedy et al., 2016) pre-trained on Ima-
eNet (Krizhevsky et al., 2012) to compute FID. We can observe from
able 1 that we obtain a lower FID than FSGAN and FaceShifter. This
roves that our method can better preserve the game domain feature.
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Fig. 5. Subjective comparison with FSGAN (Nirkin et al., 2019) and FaceShifter (Li
et al., 2019) on the game character test set.

Table 4
Quantitative ablation study.

Method ID retrieval accuracy (%) ↑ Pose
Error ↓

Expression Error ↓

CosFace ArcFace2 SphereFace DFER FECNet DLN

w/o Exp 98.81 99.59 99.13 3.04 4.24 0.32 0.41
w/o Cycle 98.95 99.68 99.28 3.41 4.15 0.25 0.26
w/o DRB 98.85 99.93 99.34 3.54 4.00 0.26 0.35
Single ArcFace 95.70 99.45 97.59 2.68 3.63 0.20 0.23
Single FaceNet 76.29 64.60 74.88 2.46 3.68 0.21 0.25
Ours 98.76 99.71 99.15 2.63 3.52 0.20 0.23

Table 5
Ablation results for the finetune strategy.

Method w/o FT Ours

FID 43.56 28.95

4.2.3. Subjective comparison
To further illustrate the effectiveness of our method, we conduct

a user study on our game test set (10K human-game face pairs) with
FSGAN and FaceShifter. Thirty participants are asked to complete the
questionnaire in terms of identity consistency, expression consistency,
or image realism. Each metric contains 30 cases, and each participant
needs to choose the best result under each metric.

Fig. 5 demonstrates the results of the subjective comparison in the
user study. Our method outperforms the baselines in terms of identity
consistency, expression consistency, and image realism. These results
further validate the performance of our method.

4.3. Comparison on human faces

To further validate our contributions to identity consistency and
expression consistency, we conduct comparison experiments with more
face swapping methods on human faces and report the comparative
results below, including qualitative and quantitative comparisons. Par-
ticularly, for a fair comparison, models used in this section are only
trained on human data without fine-tuning on game character images.

4.3.1. Qualitative comparison
We first compare with Deepfakes (DeepFakes, 2019), FaceSwap

(MarekKowalski, 2021), FSGAN (Nirkin et al., 2019) and FaceShifter (Li
 i

6

et al., 2019) on the FaceForensics++ (FF++) (Rössler et al., 2019)
dataset. FF++ contains the face swapping results of Deepfakes, Face-
Swap, and FaceShifter. We obtain the results of FSGAN by applying the
official pre-trained model to FF++. As can be observed in Fig. 6, the
comparisons illustrate that our work has obvious benefits in terms of
expression preservation and identity consistency. Specifically, without
any constraint on identity or attributes (expression, etc.), the results
of Deepfakes and FaceSwap cannot preserve identity well and suffer
a severe mismatch in attributes (expressions, etc.). Results generated
by FSGAN lose similarity with the source face and also suffer from
inconsistent lighting and skin color. FaceShifter performs very well in
terms of image quality and attributes consistency but cannot preserve
the target expressions, such as gaze direction. Differently, our method
handles all of the above problems well.

Since we cannot acquire codes or released results of FaceCon-
troller (Xu et al., 2021) and SimSwap (Chen et al., 2020), comparisons
with them are conducted on the images cropped from their papers.
Fig. 6(b), (c) illustrate the qualitative results, and the comparisons show
that besides the comparable image quality, our method preserves the
identity of the source image and the subtle expressions of the target
image better. As seen from the red box in Fig. 6(b), (c), the results of
the two compared methods contain some unwanted subtle expressions
such as wrong gaze direction and disappearing frown.

A common problem can also be observed from the above com-
parisons: the swapped faces of the six baselines are affected by the
expression of the source face to some extent which is sufficient proof
of the point we mentioned that the face identity embedding could be
easily affected by facial attribute information.

4.3.2. Quantitative comparison
The quantitative comparisons only involve the four results-available

or codes-available methods Deepfakes, FaceSwap, FSGAN, and
FaceShifter. Following Li et al. (2019), we construct the test set of
10,000 images by sampling ten frames from each of 1000 resulting
videos of FF++ for the above four methods and ours, respectively. The
uantitative comparisons rely on these five test sets. To measure our
roposed method’s effectiveness in identity consistency and expression
onsistency, we adopt the identity retrieval accuracy and expression
rror as in Section 4.2.2.

The quantitative results are shown in Table 3. Similar to the game
haracter face swapping experiment results, we also get the highest
dentity retrieval accuracy, lowest pose error, and lowest expression
rror for human face swapping. This means that our method with
ompound identity is more robust in identity transferring than single-
dentity-based methods (FaceShifter) and much better than those meth-
ds (Deepfakes, FaceSwap) without any identity constraint. Moreover,
fine-grained expression constraint contributes more to expression

reservation than implicit constraint methods.

.4. Ablation study

We conduct several ablation settings on the game dataset to demon-
trate the effectiveness of our framework.
Cross-domain Finetune: To verify the effectiveness of the finetune

trategy, we train a model without finetuning (w/o FT). As shown
n Fig. 8 and Table 5, it can be observed that the finetune strategy
ignificantly improves the quality of the generated image in both visual
uality and FID. This proves that the finetune strategy contributes to
ross-domain face swapping.
Expression Embedding Loss: To demonstrate the effectiveness

f our expression embedding loss, we conduct an experiment setting
ithout the expression loss (w/o Exp). Quantitative results in Table 4

how that the expression error rises a lot when using no expression
oss. Observing Fig. 7, the swapped faces without the expression loss
end to be influenced by the expression of the source face (marked

n red boxes). Both quantitative and qualitative results validate the
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Fig. 6. Comparison with existing works on natural faces. (a) Comparison with Deepfakes (DeepFakes, 2019), FaceSwap (MarekKowalski, 2021), FSGAN (Nirkin et al., 2019) and
FaceShifter (Li et al., 2019) on FaceForensics++ (Rössler et al., 2019). (b) Comparison with FaceController (Xu et al., 2021). (c) Comparison with SimSwap (Chen et al., 2020).
(b) and (c) show images that are cropped from their published paper. As observed, our method preserves the identity of the source image and the subtle expressions of the target
image better than the other methods. Some subtle expression comparisons are marked with red boxes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Ablation study for each component in our framework. Some expression errors and occlusion errors are marked with red and green boxes, respectively. Please zoom in for
more details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Ablation results for the finetune strategy.

Fig. 9. Visualization of the influence of facial expressions on identity embedding. Ten
dentities and eight emotions for each identity are sampled from RaFD (Langner et al.,
010).

ffectiveness of our fine-grained expression constraints in training.
t also reflects that the identity embeddings still contain expression
nformation.
8

Compound Identity: To evaluate the effectiveness of the compound
trategy proposed by us. We trained another two models called Single
rcFace and Single FaceNet. The comparison results are shown in Ta-
le 4, comparing their ID Retrieval accuracy and Expression Error, the
ompound identity embeddings outperform the single identity embed-
ing. This validates that compound identity embeddings can alleviate
he effect of expression leaked in identity embedding and provide more
obust identity information.

To further verify this conclusion, we conduct a visualization exper-
ment by observing the distribution of 8 basic expressions from one
dentity, as shown in Fig. 9. It can be observed that eight points with
ne color referring to one identity are closed to each other but have
istances from each other. This explains that the single identity embed-
ing contains other facial attributes, and thus the swapped expression
ay be affected by the source face.

It can also be found that the expression variances from different
ace recognition models are inconsistent. This is supported by the ob-
ervation in Fig. 9(b) and (c), where the same color clusterings (marked
n red and black circles) with FaceNet and ArcFace are shaped differ-
ntly. So the compound identity embeddings can alleviate attributes’
ffect due to the inconsistency of expression variance and reduce the
xpression error.

Moreover, some expressions even change the identity of one person
o another, as shown in Fig. 9(b). Therefore, a single identity embed-
ing is not robust enough to achieve proper identity transfer, as shown
n Fig. 9(a). However, our compound identity embeddings can avoid
his problem.
Cycle Consistency Loss: To verify the effectiveness of the proposed

ycle Consistency Loss, we train the model without it (w/o Cycle).
nd we use the same Pose Error metric (the 2 distance between
ose vectors extracted by HRNet Sun et al., 2019) as Li et al. (2019)
o evaluate the effectiveness of the cycle consistency loss. It can be
bserved from Table 4 and Fig. 7 that the Pose Error rises a lot and
ome occlusions are missed (marked in green boxes) without the Cycle
onsistency Loss. This proves that the Cycle Consistency Loss is very
seful for preserving attributes of the target.
Detail Recover Block: To verify the effectiveness of the Detail

ecover Block in our framework, we remove it from the full pipeline
w/o DRB). As shown in Table 4, all the attribute-related evaluation
etrics (Pose Error and Expression Error) are worse than the full
odel. Besides, a lot of details (e.g., background details) are lost in

he swapped image, as can be seen in the fifth column of Fig. 7.
his indicates that the multi-level attribute features through the skip
onnections transfer detailed information, validating that the Detail
ecover Block is beneficial.

.5. Robustness

In this subsection, we will evaluate our proposed method’s robust-
ess. We conduct several experiments on more wild images, video
equences, and even unnatural images (facial landmark images). Fur-
hermore, an identity interpolation experiment is also performed.
Wild Images: We first perform face swapping on more wild images.

s shown in Fig. 10(a) and (b), these target faces come from different
ategories, including game character faces, and human faces, or art
aintings, and all of these images are unseen during training. The
esults show that our method works well on all kinds of facial images
nd can preserve the target expression well when transferring identity,
ven if the expression of the source image and the target image are very
ifferent. Our method can also handle pose changes, different face skin
olors, and different lighting.
Video Sequences: We then perform our face swapping method on

ideo sequences. The swapped results are shown in Fig. 11. It can be
een that the swapped faces not only preserve the identity and the
xpression well but also have a natural facial movement along with the
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Fig. 10. Face swapping results. We present the frontal face and posed face results. Please zoom in for more details.

Fig. 11. Face swapping on video sequences. Please zoom in for more details.

9
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Fig. 12. The results of identity embedding interpolation results. During the interpolation process, our generated faces have semantically meaningful identity transitions. Please
zoom in for more details.
Fig. 13. Face swapping on facial landmark images. We utilize the facial landmarks as
he target images, and the results indicate that our face swapping only changes the
dentity information without introducing other attributes.

ime sequence. This shows that our face swapping method demonstrates
romising performance when applied to videos.
Identity Interpolation: We further perform identity interpolation

o explore how identity embeddings influence the face swapping re-
ults. Specially, we perform Spherical Linear Interpolation (Kremer,
008) (Slerp) between two different identity embeddings:

𝑖𝑑 = 𝑆𝑙𝑒𝑟𝑝(𝑓𝐴
𝑖𝑑 , 𝑓

𝐵
𝑖𝑑 ; 𝛼)

=
sin((1 − 𝛼) × 𝜃)

sin(𝜃)
𝑓𝐴
𝑖𝑑 +

sin(𝛼 × 𝜃)
sin(𝜃)

𝑓𝐵
𝑖𝑑

(13)

here 𝑓 ∗
𝑖𝑑 are identity vectors and 𝜃 is the angle between the two

ectors. It can be observed from Fig. 12 that as 𝛼 increases, the identity
f the swapped face gradually transitions from A to B. This proves that
ur model can adapt well to the distribution of identity features.
Unnatural images: To further study our method, we swap source

uman faces to target unnatural faces (facial landmark images). As
an be observed from Fig. 13, the swapped faces properly reflect the
dentities of source faces and the attributes (expression and pose) of
arget faces. This reveals that our facial image encoder can extract
orrect attribute representations, and our decoder also synthesizes faces
orrectly without texture being consistent with target images.

.6. Limitation

Finally, we evaluate our method on images in extreme situations.

s shown in Fig. 14, failure cases are produced by our method when

10
Fig. 14. The examples of failure cases. Heavy occlusions or extreme poses lead to
inaccurate identity and expression embeddings and ultimately influence the swapped
images.

the face is severely occluded or under extreme angles. The reasons for
these cases mainly come from two aspects, (1) There are fewer such
extreme faces in the training set, so the encoder cannot learn how to
extract accurate attribute information from them. (2) Heavy occlusions
or extreme poses can lead to inaccurate identity embeddings and
expression embeddings, so the loss function based on these embeddings
cannot provide adequate supervision during training. (3) The temporal
information is not taken into account to enhance the consistency across
subsequent frames. In the future, we will further investigate the model
of temporal information to enhance the video face-swapping quality.

5. Conclusion

This work proposes a new face swapping method for game char-
acter face swapping, allowing the game user to generate customized
identity-specific game CG videos. We collect a game face dataset and
propose a fine-tuning strategy to improve the image quality of cross-
domain face swapping. Besides, we propose a novel expression loss
to guide the expression of the swapped face image close to that of
the target image. Moreover, the compound identity embeddings are
proposed to alleviate individual face recognition models’ unexpected
bias (e.g. expression variance). Qualitative, quantitative experiments on
both human data and game data show that the proposed method is well
adapted to the problem of cross-domain face swapping and outperforms
the state-of-the-art methods.
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