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ABSTRACT
Speech emotion recognition (SER) is of great importance in
human-computer interaction. Recent research has demon-
strated that self-supervised learned acoustic and linguistic
features are helpful in this task. However, few works have
fully exploit the advantages of the pre-trained features in
SER. The primary challenge is how to effectively extract the
complementary emotional information implied in the pre-
trained features of the respective modality. To tackle this
challenge, we propose a novel modality-sensitive multimodal
speech emotion recognition framework. In a nutshell, we
aim to exploit the typical emotion features in each modal-
ity and then fuse the complementary emotional information
for classification. Specifically, we first utilize the parallel
uni-modal encoders to refine the emotion-related information
from the pre-trained features of each modality. For better
fusion of the multimodal features, we develop a group of
learnable emotion query tokens to gather the emotional infor-
mation from the refined acoustic and linguistic features with
the cross-attention mechanism in the transformer decoder.
Observing the modality bias problem in multimodal methods,
we introduce the random modality masking training strategy
to maximize the utilization of the emotional information in
each modality and mitigate this problem. We evaluate our
method on the widely used IEMOCAP dataset and achieve
1.1% and 0.9% improvements on the unweighted accuracy
and weighted accuracy, respectively. Extensive experiments
demonstrate the effectiveness of the proposed method.

Index Terms— Speech Emotion Recognition, Multi-
modal Fusion, Transformer

1. INTRODUCTION

With the rise of the metaverse, Speech Emotion Recognition
(SER) plays a vital role in human-computer interaction (HCI)
[1] and affective computing [2]. With the help of SER, the
machine can perceive emotions in the context of conversa-
tions and then respond to humans appropriately.

When we speak, the content of our message and the tone
of our voice complement each other to convey our feelings.

* Corresponding author.

Due to this nature, multimodal SER has attracted increased
attention in recent years. Yoon et al. [3] propose a novel mul-
timodal dual recurrent encoder model to combine the audio
signal and text feature for SER. Gu et al. [4] design a deep
multimodal architecture for SER by aligning text and audio at
the word level and applying hierarchical attention to textual
and acoustic features. Peri et al. [5] introduce video informa-
tion and set up a multitask learning for emotion recognition.

In this paper, we aim to recognize the emotion from
acoustic and linguistic information. With the great success
of large-scale self-supervised pre-trained models for nat-
ural language processing [6, 7] and speech representation
extraction [8, 9], some works [10, 11] opt to utilize the self-
supervised learned features and achieve better performance
in SER. Recently, MPNet [7] and HuBERT [9] are the widely
used pre-trained models and have been shown to be robust in
many tasks. Thus, we employ them to extract text and audio
features in this paper.

Inspired by the powerful pre-trained features, a series of
methods [12, 13, 14, 11, 15] with various multimodal fu-
sion strategies have been proposed for SER. However, few
works focused on exploring the complementary emotional in-
formation implied in the pre-trained features of the respective
modality. In practice, we find that multimodal methods are
apt to classify emotions mainly relying on linguistic informa-
tion while making light of audio signals. One assumption is
that the emotional information lies in the plain sight of the
pre-trained linguistic features, while it lies in the deep space
of the audio features; therefore, the network may rapidly con-
verge toward the text direction. However, audio information
should be at least as significant as text, if not more so. For
example, different tones may imply different emotions when
speaking the same utterance.

To address the above issues, we propose a novel Modality-
Sensitive Multimodal Speech Emotion Recognition frame-
work (MSMSER). To be specific, we develop a modality
interaction transformer [16] (MIT), which utilizes a group
of trainable emotion query tokens to retrieve emotional in-
formation from the concatenated text and audio features.
Benefiting from the design of MIT, we introduce a Random
Modality Masking (RMM) strategy by randomly masking
the audio features or text features during training to compelIC
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I'm so excited.
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Fig. 1. Overview of the proposed modality-sensitive multimodal speech emotion recognition framework. We utilize the pre-
trained HuBERT [9] and MPNet [7] to extract the acoustic and linguistic features, respectively. In order to refine the emotional
information in the pre-trained embeddings, we develop two parallel uni-modal emotion feature refinement encoders followed
by self-attention modules. Then we propose a modality interaction transformer to integrate the emotion features from two
modalities through the learnable emotion query tokens. Moreover, we design a random modality masking training strategy by
randomly masking the audio or text embeddings in training to compel the models to fully perceive the emotional information
of each modality.

the model to fully perceive the powerful emotion features in
each modality. Thanks to this mechanism, our method greatly
mitigates the modality bias problem. Extensive experiments
on the widely used IEMOCAP dataset demonstrate that the
proposed method exceeds the state-of-the-art approaches.

2. PROPOSED METHOD

Given the text and audio signal of one speech, our method is
able to infer the emotion label. The overview of the proposed
framework is shown in Figure 1. In this work, we employ
the well-known self-supervised learning models HuBERT [9]
and MPNet [7] to extract the pre-trained acoustic and linguis-
tic features, respectively. We introduce the parallel uni-modal
emotion feature refinement encoders in Section 2.1 to fully
encode the emotion-related information in the self-supervised
features. Then in Section 2.2, we develop a novel multi-
modal fusion approach to capture the complementary emo-
tion features from the acoustic and linguistic embeddings. To
overcome the problem of modality bias, we propose a ran-
dom modality masking strategy to make our model sensitive
to emotional information in each modality. This strategy is
presented in Section 2.3.

2.1. Uni-modal Emotion Feature Refinement

Since neither HuBERT nor MPNet is pre-trained for emo-
tion recognition, we introduce two parallel uni-modal trans-
former encoders to exploit the emotional information in the
self-supervised features. Given the pre-trained frame-level
audio features a1:T ∈ RT×da and word-level text features
w1:N ∈ RN×dw , we obtain the emotion-related features af-
ter encoding. Afterwards, the encoded features are further
refined with a self-attention module to highlight the typical
emotional frames in the respective modalities. The self-
attention module consists of a two-layer Multilayer Percep-
tron (MLP) and a Sigmoid to obtain the scales for each frame.
The encoded features are then scaled to obtain the final text
and audio features, a

′

1:T ∈ RT×de and w
′

1:N ∈ RN×de . Note
that a1:T and w1:N are transformed to the same dimension
de before encoding.

2.2. Modality Interaction Transformer

Different from the multimodal fusion strategy in previous
works, we develop a modality interaction transformer (MIT)
to better integrate the emotional features from different
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sources. To be specific, we employ a group of trainable
emotion query tokens to aggregate emotional information of
the concatenated a

′

1:T and w
′

1:N by the attention mechanism.
The query tokens q ∈ RL×de are used as the query (Q), and
the assembled multimodal features are used as the key (K)
and value (V ) in the transformer decoder. L is the number
of query tokens. Before concatenation, the text features and
audio features are appended with position encodings and cor-
responding trainable type codes. The position encodings help
the model perceive contextual information, and the trainable
type codes make the emotion query tokens sensitive to the
features of different modalities. Since we calculate the cross-
attentions between each query token and all the acoustic and
linguistic features, the query tokens can be viewed as the
intermediary which helps the emotional information in two
modalities interact with each other. After cross-attention, the
output L emotion query tokens contain the complementary
emotional features. Then we employ a self-attention pooling
layer [14] to merge L tokens into one and send it to a 2-layer
MLP for classification.

2.3. Random Modality Masking

In practice, we observe that the model tends to recognize
emotions primarily using the emotion features in the text.
This problem is demonstrated in Section 4.3. To mitigate this
problem, we introduce the random modality masking strat-
egy (RMM) when training the models. Taking advantage of
the structure of MIT (Section 2.2), we can easily mask any
modality feature by setting the corresponding attention mask
to zero. In the early stages of training, we make our model pay
more attention to the uni-modal features by randomly mask-
ing the audio or text embeddings. Then in the later stage, the
model focuses on obtaining the complementary multimodal
emotional features. Specifically, we introduce a hyperparam-
eter p, which denotes the probability that the model applies
the RMM in each training sample. RMM masks the text fea-
tures with a probability 0.6 and the audio features with a prob-
ability 0.4, respectively. In our experiments, p starts at 0.8 at
and decays to 0 as the training continues.

3. EXPERIMENTS

3.1. Dataset

Following the most previous work on SER, we use the IEMO-
CAP [17] dataset. This dataset contains five sessions, and
each session is recorded during a conversation between one
male and one female speaker. To stay consistent with previous
work [18, 15, 11], we consider the 5531 acoustic utterances of
4 emotions, neutral, happy (happy & excited), sad and angry.
For more accurate evaluations, we conduct our experiments
with the 5-fold leave-one-session-out cross-validation. Also,
we use the commonly used weighted accuracy (WA) and the
unweighted (UA) as the evaluation metrics.

Table 1. Comparison with other methods on IEMOCAP (%).

Method UA (%) WA (%)
CMA [12] 72.8 -

GBAN [14] 70.1 72.4
STSER [19] 72.1 71.1
CME [20] 73.5 72.7

KS-Transformer [11] 75.3 74.3

MSMSER (Ours) 76.4 75.2

3.2. Implementation Details

Our framework is implemented by PyTorch. The pre-trained
models of HuBERT and MPNet are available online1. We
employ Adam optimizer for training with a learning rate of
2× 10−5. The hidden size of the 8-head transformer encoder
and decoder is set to 768. Our models are trained for 100
epochs, and the random modality masking probability p is 0.8
and linearly decays to 0 at the 70th epoch. The batch size is
8. Our code will be available soon.

4. RESULTS AND ANALYSIS

To verify the effectiveness of the proposed framework, we
carry out 4 groups of experiments on IEMOCAP. In Sec-
tion 4.1, we compare our method with the recent multimodal
SER approaches. In Section 4.2, 4.3 and 4.4, we perform a
series of ablation studies to prove the effectiveness of each
component in our method.

4.1. Results and Comparison

We first compare our methods with other multimodal (text
+ audio) SER methods on the IEMOCAP, and the compar-
ison result are listed in Table 1. The baseline methods in-
clude CMA [12], GBAN [14], STSER [19], CME [20], KS-
Transformer [11] and all the quantitative results are collected
from their papers. It can be observed that our method out-
performs the state-of-the-art by 1.1% and 0.9% in terms of
unweighted accuracy and weighted accuracy, respectively.

4.2. Ablation Study on the Subcomponents

To evaluate the effectiveness of each component in our frame-
work, we first conduct an ablation study with 7 variants: (1)
Only use the pre-trained text feature (Text), (2) Only use the
pre-trained audio feature (Audio), (3) remove the uni-modal
encoder in Section 2.1 (w/o Encoder), (4) remove the self-
attention module in Section 2.1 (w/o SelfAtt), (5) remove
the modality interaction transformer with concatenation fu-
sion model (w/o MIT), (6) and our full model (Full). The re-
sults are reported in Table 2. As shown, all multimodal meth-

1https://github.com/facebookresearch/fairseq

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 12,2023 at 01:16:28 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. Results of ablation study on each component of the
proposed framework.

Method UA (%) WA (%)
Text 66.5 64.7

Audio 64.9 63.2
w/o Encoder 71.9 70.9
w/o SelfAtt 72.5 71.4

w/o MIT 67.2 65.1

Full 76.4 75.2

Table 3. Results of ablation study on the random modality
masking strategy.

Method UA (%) WA (%)

w/o RMM 73.3 71.7
w/o RMM (only text) 63.2 61.2

w/o RMM (only audio) 55.5 55.2

Full 76.4 75.2
Full (only text) 65.8 64.4

Full (only audio) 63.4 62.9

ods surpass the uni-modal methods (Text or Audio). Com-
pared with the Full model, the performance of w/o Encoder
drops dramatically, demonstrating that the two parallel uni-
modal encoders help exploit the emotional information. Fur-
thermore, the comparisons between w/o Encoder and w/o
SelfAtt imply the effectiveness of the self-attention module
in each uni-modal encoder. The performance drops dramat-
ically by replacing the modality interaction transformer with
the simple concatenation fusion method, which shows that it
is difficult for the commonly used fusion strategy to extract
the complementary information. Once the modality interac-
tion transformer is ablated, the performance drops dramati-
cally. Therefore, the design of MIT significantly improves
aggregating the emotional information in each modality.

4.3. Evaluation of RMM

We then perform another group of ablation studies to evaluate
the effectiveness of the random modality masking strategy.
We train the models with and without RMM, denoted as Full
and w/o RMM, respectively. Then we evaluate both models
by masking the audio or text in inference stage. The results
are shown in Table 3. We can observe that the performance of
masking the text features (w/o RMM (only audio)) is much
lower than that of masking the audio features (w/o RMM
(only audio)) when testing the trained models without RMM.
It illustrates that the models tend to use the text features for
classification. While it shows the approximate results in the
same test settings when using the models trained by RMM.
Furthermore, the results of Full (only text) and Full (only

Fig. 2. Visualization of the correlation between the perfor-
mance and the number of the emotion query token.

audio) are close to the results of the uni-modal (Text and Au-
dio) in Table 2. It proves that RMM helps our model take full
advantage of the emotional information in each modality and
mitigates the modality bias problem.

4.4. Analysis of the Emotion Query Token

We conduct another group of experiments to explore the ap-
propriate number of the emotion query token introduced in
Section 2.2. The query tokens are trained to perceive the emo-
tional information in each modality. In our experiments, we
set the number L of the query token at 2, 5, 10, 20, 30, and
50. The effect of the number of the emotion query token is
shown in Figure 2. As can be seen, the performance increases
as the L grows. We choose L = 30 in our final model for the
tradeoff.

5. CONCLUSION

In this paper, we propose a novel modality-sensitive multi-
modal speech emotion recognition framework (MSMSER).
We first use two parallel uni-modal encoders with a self-
attention module to refine the pre-trained audio and text
features. Then we utilize a group of learnable emotion query
tokens to incorporate the emotional information from multi-
modal features with a transformer decoder. In addition, we
propose to use the random modality masking strategy to over-
come the modality bias problem in the multimodal task. Our
method exhibits a new perspective for effectively fusing the
multimodal features. Extensive experiments on the widely
used IEMOCAP dataset prove the superiority of the proposed
framework. We plan to combine more modalities to improve
SER performance in our future work.
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