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Abstract—Attention-based networks currently identify their
effectiveness in multimodal sentiment analysis. However, existing
methods ignore the redundancy of auxiliary modalities. More
importantly, existing methods only attend to top-down attention
(static process) or down-top attention (implicit process), leading
to the coarse-grained multimodal sentiment context. In this paper,
during the preprocessing period, we first propose the multimodal
dynamic enhanced block to capture the intra-modality senti-
ment context. This can effectively decrease the intra-modality
redundancy of auxiliary modalities. Furthermore, the bi-direction
attention block is proposed to capture fine-grained multimodal
sentiment context via the novel bi-direction multimodal dynamic
routing mechanism. Specifically, the bi-direction attention block
first highlights the explicit and low-level multimodal sentiment
context. Then, the low-level multimodal context is transmitted
to a carefully designed bi-direction multimodal dynamic routing
procedure. This allows us to dynamically update and investigate
high-level and much more fine-grained multimodal sentiment
contexts. The experiments demonstrate that our fusion network
can achieve state-of-the-art performance. Notably, our model
outperforms the best baseline on the metric ‘Acc-7° with an
improvement of 6.9%.

Index Terms—multimodal fusion network, multimodal senti-
ment analysis, attention mechanism.

I. INTRODUCTION

ULTIMODAL sentiment analysis has raised increasing

interest in artificial intelligence systems, which focuses
on reaching the much more correct sentiment message via the
integration of multiple sentimental modalities. Among these,
the text [1], audio [2], and video [3] modalities are popularly
utilized to analyze the related multimodal research [4]-[9].
For instance, the multimodal sentiment analysis technique has
already been applied to the interaction between the humanoid
robot Pepper and patients, which allows for significant im-
provement of life quality of patients. Due to the consistency
and complementarity among multiple sentiment modalities,
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capturing the joint representations indeed boosts the sentiment
analysis performance. Consequently, the primary concern of the
multimodal sentiment analysis task is to learn the much more
sophisticated multimodal sentiment context among multiple
modalities [10]-[14].

Recently, attention-based networks [15] have gained
widespread attention for their significant performance in
capturing the task-related context among various modalities in
computer vision and NLP [16]-[18]. Existing attention-based
networks consist of down-top attention and top-down attention
based modules. EF-Net [19] employed the down-top attention
based architecture to deal with image presentation, contributing
to spatial context among distinct receptive areas of the image.
In addition, MclIntosh [20] proposed the down-top attention
based fusion network to highlight cross-modality context
between video and text via the implicit process. Compared
to the above down-top attention based networks, MulT [21]
and MMLGAN [22] presented the top-down attention based
multimodal fusion framework. This can explore sentiment
context among multiple modalities via the static process.
Nevertheless, the aforementioned techniques totally ignore the
redundancy of auxiliary modalities (audio and video). Note
that, compared to text, the auxiliary modalities consist of
many more redundancy messages [23], [24]. Intuitively, directly
integrating text and the original auxiliary modalities into the
joint representation may increase the difficulty of effectively
reasoning about multimodal messages. More importantly, the
top-down attention based models leverage the static method
to simply investigate low-level explicit interactions at once.
Additionally, the down-top attention based models focus on
the implicit multimodal interactions, which fails to exploit
explicit interactions. Note that the above explicit interactions
are captured via the immediate calculation among the original
input modalities. In contrast, the implicit interactions are
captured by calculating the correlations between the original
input modalities and the output information. Accordingly,
existing methods can only capture the relatively coarse-grained
multimodal sentiment context, leading to the great deterioration
of task performance.

In this paper, during the preprocessing period, the multimodal
dynamic enhanced block is first proposed to dynamically
capture the intra-modality sentiment context. Due to the
incorporation of guidance from the more discriminative text
modality, the enhanced block indeed has the potential to
effectively decrease the intra-modality redundancy of auxiliary
modalities. Furthermore, the bi-direction attention block is
proposed to obtain the fine-grained multimodality sentiment
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Fig. 1: BAFN: Initially, during the preprocess period, the multimodal dynamic enhanced block is utilized to dynamically
decrease the intra-modality redundancy of auxiliary modalities(audio X, video X,). Then, the bi-direction attention block is
further proposed to exploit the much more fine-grained multimodal sentiment context.

context via the novel bi-direction multimodal dynamic routing
mechanism. Specifically, the bi-direction attention block first
captures the explicit and low-level multimodality sentiment
context via the static multimodal process. Then, the above
low-level multimodal context is transmitted to the carefully
designed multimodal dynamic routing procedure associated
with multiple iterations. This naturally gives the multimodal
fusion network the strong ability to dynamically update and
investigate the much more fine-grained multimodal sentiment
context. To the best of our knowledge, our model is the first
dynamic multimodal sentiment fusion network that simulta-
neously focuses on the analysis of redundancy of auxiliary
modalities, as well as the investigation of the much more
fine-grained multimodal sentiment context. In addition, our
proposed bi-direction attention based fusion network (BAFN)
has demonstrated the superiority on two multimodal sentiment
analysis benchmarks.

II. RELATED WORK

The existing multimodal sentiment learning model consists
of the following two leading lines:

Non-Attention based Multimodal Learning Recently,
LSTM- and RNN-based techniques have drawn a surge of
interest in multimodal sentiment analysis for their excellence in
exploiting the temporal correlation from the sequence [25]-[31].
For instance, BC-LSTM [32] proposed bi-directional LSTM to
highlight the sentiment properties among modality utterances.
RMFN [33] utilized RNN to decompose the complex multi-
modal fusion process into several fusion substages, leading to
the much more sophisticated multimodal intercorrelations. MV-
LSTM [34] presented the multiview LSTM block to explicitly
model the consistency and complimentary message among
multiple modalities. Additionally, Self-MM [35] introduced the
subtask analysis method to exploit the multimodal sentiment
intercorrelations. MFM [36] factorized the multimodal joint
distribution into the inter-modality and intra-modality sentiment
pertinence. ICCN [37] applied the deep canonical correlation
analysis (CCA) mechanism to retrieve the nonlinear and
complex intercorrelations among various modalities. ERLDK
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[38] proposed a reinforcement learning module to perform the
multimodal emotion recognition task. The hybrid deep model
[39] utilized the deep DBN model to fuse audio and visual
representations. In addition, tensor-based models have raised
increasing interest due to the high-dimension properties. TFN
[40] employed the tensor network to explicitly account for
the unimodal, bimodal, and trimodal sentiment interactions.
Based on TFN, LMF [41] further proposed modality-specific
low-rank factors to deal with multiple modalities, which can
significantly decrease the computational complexity of the
multimodal learning model. However, the above networks fail
to effectively explore the multimodal sentiment context from
the long sequence, which may limit the expressive power of
the learning model.

Attention based Multimodal Learning Compared to the
aforementioned models, attention-based frameworks have
demonstrated superiority in the analysis of long sequence rep-
resentation [42]-[48]. MMLGAN [22] proposed a multimodal
local-global attention network to integrate representations
of different modalities, leading to a discriminative affective
representation. MARN [49] leveraged the multi-attention block
to simultaneously investigate multiple cross-modality sentiment
contexts in each time step and then store the sentiment
context in the hybrid memory block. RAVEN [50] applied the
attention gating mechanism to learn a nonlinear combination
between the visual and acoustic modality, which brings forth
the nonverbal shift vector. Similarly, MAG [5] introduced an
attention gated memory to integrate the text and nonverbal
cues into another vector, which is subsequently added to the
text modality. Additionally, MFN [51] utilized three LSTMs
to attend to each modality separately and employed a special
attention mechanism called the delta-memory attention network
to identify the cross-modality sentiment interactions. MISA
[10] employed the distribution similarity block to calculate
similar portions across all modalities and leveraged the self-
attention mechanism to account for the multimodal sentiment
interactions. MulT [21] proposed the directional pairwise
cross-modality attention mechanism to capture the interactions
between multimodal sequences across distinct time steps, and

/)
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2022 at 14:24:59 UTC from IEEgEPXplore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3218018

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

latently adapt the sequence from one modality to another.
MCTN [52] assigned the cyclic consistency loss to the standard
Transformer, which can ensure that the multimodal sentiment
contexts retain maximal information from all modalities.

However, existing multimodal sentiment analysis networks
neglect the redundancy of auxiliary modalities (audio and
video), which increases the difficulty of effectively reasoning
about multimodal sentiment context. More importantly, the
aforementioned attention-based network only attempt to capture
the low-level explicit or implicit multimodal interactions via
the uni-directional attention mechanism (top-down or down-top
attention). This fails to capture the much more fine-grained
multimodal sentiment context among multiple modalities.

In recent years, several papers research on multimodal
learning have been published [9], [22], [38], [39]. The paper
[22] is the most closely relevant to our paper, which used
the attention-based method to deal with the multimodal
sentiment analysis task. MMLGAN [22] proposed the top-
down attention based multimodal fusion framework to capture
multimodal sentiment context. MHMAN [9] attends to the
hierarchical multimodal fusion network for video question
answering. ERLDK [38] and The hybrid deep model [39]
focused on the non-attention based multimodal fusion network
for multimodal sentiment analysis. Compared to previously
published papers, our proposed network can simultaneously
analyze the redundancy of auxiliary modalities, and investigate
the much more fine-grained multimodal sentiment context.

X, X X, Softmax (X X,)
Xa
Xa
>
L
>
Ll
1‘ update X,

Fig. 2: Multimodal dynamic enhanced block. Initially, X,
and X; are mapped into the cross-modality fusion space X, -
X;. Subsequently, the softmax function is utilized to exploit
the cross-modality sentiment context coefficients. Then, the
coefficients are applied to deal with the original X, leading
to the much more discriminative modality representation X,

III. METHODOLOGY

As shown in Figure 1, the proposed BAFN consists of two
essential components: 1) during the preprocessing period, the
multimodal dynamic enhanced module is leveraged to decrease
the intra-modality redundancy of auxiliary modalities, and 2)
the bi-direction attention block is further proposed to capture
the much more fine-grained multimodal sentiment context.

A. Preliminaries

The two public multimodal sentiment analysis benchmarks
consist of audio, video, and text. The utterance-level representa-
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tion of the above modalities are represented as X, € RTaxda
X, € RTvXdv and X; € RTe*4 T,(i € {a,v,t}) refers to
the number of utterances, and the feature dimension is denoted
as d; (i € {a,v,t}). Note that, the original benchmarks utilized
the interval duration of each word utterance as a time step.
Then, the benchmarks aligned audio and video by calculating
the average value over the utterance interval of each word, i.e.,
T, = T, = T;. Due to the properties of the dot product, we
adopt the linear function to analyze {X,, X,,, X;} for retrieving
the same feature dimension d;, i.e., d, = d, = d;.

B. Multimodal Dynamic Enhanced Block

During the preprocessing period, the multimodal dynamic
enhanced block (Figure 2) is proposed to dynamically capture
the intra-modality sentiment context of X, € R7«*da and
X, € RTv*dv with the help of the text modality X, € RT#*d:
This allows us to effectively decrease the redundancy in the
auxiliary modalities (audio and video modality). Specifically,
the enhanced block consists of M process heads, where
each head includes N adaptive iterations. That is, different
processing heads consist of a distinct number of iterations.
Intuitively, the multihead mechanism allows for extracting
the intra-modality sentiment context with the multispect view,
yielding the comprehensive sentiment context. Additionally,
the multiple iterations has the potential to dynamically update
the intra-modality sentiment context, leading to the much more
discriminative audio (video) modality.

For the single-head case, the intra-modality context Xagf:/ m]
of the m-th head associated with V,,, iterations is formulated
as follows:

Xalnfym] = Softmax (Xq - X¢) Xa, Nm =1
Nm—1

Xa%v’"] = Softmax < Z Xa[:;} -Xt> Xagiv’n_l],Nm > 2.
i=1
M

During the first iteration, audio modality X, and text
modality X; are explicitly mapped into the cross-modality
fusion space X, - X¢. Subsequently, the softmax function
is introduced to analyze X, - X;, leading to the cross-
modality sentiment context coefficients. Note that the softmax
function attempts to compute an attention score matrix, where
the (i,j)-th element of the matrix refers to the similarity
between the i-th element of audio modality X, and the j-
th element of text modality X;. Therefore, the i-th element
of XGL,LN =l is a weighted summary of X,, with the weight
value determined by the i-th row in the above attention score
matrix. Similarly, many attention-based methods, such as
MISA [10] also used the softmax function to analyze the
cross-modality interactions. Compared to the other weighted
averaging methods, the softmax function can effectively deal
with the gradient exploding issue [53]. Hence, we use the
softmax function to analyze the multimodal fusion message in
our work. Indeed, the above sentiment context coefficients have
the strong ability to determine how the utterances of the audio
X, are influenced by the utterances in the text X;. Then, the
cross-modality sentiment context coefficients are applied to
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Fig. 3: Bi-direction attention block: The X; and Yf refer to the modality representation and multimodal sentiment context,

respectively. The multimodal sentiment context Yj[s

dynamic down-top coefficients CE;]

could be represented as the weighted sum of XJ[

s]
\

i’

with the help of the

and the top-down multimodal sentiment context atten!®). This indeed gives the multimodal

fusion model the strong ability to investigate the much more fine-grained multimodality sentiment context.

deal with the original audio modality X, contributing to the
much more discriminative sentiment properties of audio. In
other words, the large coefficients provide us with the benefit
of highlighting the text-related sentiment properties of audio
X, and the small coefficients attempt to peel off the impact of
redundancy of audio X . Due to the incorporation of guidance
from the more discriminative modality (text), the above process
indeed provides us with the strong ability to effectively decrease
the redundancy of auxiliary modalities (audio X, and video
Xo) [54], [55].

Then, the next iteration attempts to dynamically update the
cross-modality fusion space X, - X; based on the output of
the previous iteration Xagm_l]. That is, the output of the
previous iteration is leveraged to construct a new cross-modality
fusion space Xa%\] m—1l X for the next iteration, leading to
a much more compact cross-modality fusion space. Note that
the enhanced process of X, is similar to that of X,.

Taking the single-head enhanced block as a basis, the
multihead enhanced network is further established to collect
the multiway intra-modality sentiment context. Additionally,
the convolution operation is introduced to analyze the multiway
intra-modality sentiment context. This can further extract the
essential interactions among distinct Xag,]:] ml leading to the
much more discriminative modality Xa:

> [N1]

X4 = Conv (concat (Xa1 e ,XGEQ’M])) ?)

where ‘Conv’ refers to the convolution operation, ‘M’ indicates
the total number of process heads, and ‘concat’ denotes the
concatenation operation.

C. Bi-direction Attention Block

When the above multimodal dynamic enhanced process is
finished, the bi-direction attention block is further proposed
to capture the much more fine-grained multimodal sentiment
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context. With the help of the enhanced block, the much
more discriminative auxiliary modalities can be transmitted
to the bi-direction attention block. This significantly boosts
the learning efficiency to effectively extract the multimodal
sentiment context among multiple relatively discriminative
modalities.

As shown in Figure 3, the bi-direction attention block
comprises modality representations {Xz}f\[:‘1 and multimodal
sentiment context {Y;}j\[:y1 For simplicity, we utilize the index
‘i’ to represent {a,v,t}. That is, X7 = X,, Xa = X,
and X3 = X,. X; and Y; indicate the input message and
output message of the above attention block, respectively. N,
and N, refer to the number of modality representations and
multimodal sentiment context, respectively. Initially, we utilize
the convolution operation to transform the original modality
representation X; into )A(j‘i with respect to Y;. Then, the
modality transformation lei can be leveraged to generate
the multimodal sentiment context Y;. The above process is
formulated as follows:

X; = Conv (X, kernel;)
= sigmoid (Z X, * kernel; + biasi) . 3)

In addition, we extend the above single-head convolution
transformation design to the multi-head case associated with
varying convolution kernels. The multi-head mechanism indeed
allows for multiway and comprehensive information flow
between the modality transformation X )i and the multimodal
sentiment context Y}, where ‘s’ refers to the specific head:

X[Tl = Conv®! (Xi7 kernell[s])

J

= sigmoid (Z Xi* kernel&s] + biasgs]) . 4)

/)
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2022 at 14:24:59 UTC from IEEgEPXpIore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3218018

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Then, the modality transformation )A(J[Tl and the multimodal
]

sentiment context Yj[s are utilized to account for the implicit

multimodal interaction space bg‘;]. The values of bgj-] are

initialized as 0, and Yj[s] is initialized with random value.
The following formulation is leveraged to dynamically update
bg‘;]. The above bg;] and X][TJ are latently used to dynamically

update the multimodal sentiment context Yj[s]

J Jlitg

b = o)+ (XL )

Subsequently, the dynamic multimodal routing procedure
with NV, iterations is conducted to dynamically extract the
multimodal sentiment context among multiple modalities. At
each iteration, we leverage the dynamic down-top coefficients

cg‘;] to account for the down-top information flow between

(X}, and {Y;})

;21, which is calculated based on the

(]
ij
is influenced by modality

interaction space bgj'-] initialized as 0. That is, ¢;’ can be utilized

to identify how each element of Yj[s}

representations XJ[TJ Note that, the above procedure focuses

s]

on analyzing the interaction between )A(][,‘i and Yj[s], leading

to implicit multimodal interactions among X][T} The detailed
procedure is formulated as follows:

Ny
{cgj.] };V:yl =Softmax ({bﬁ]} v ! )

j=1
exp (bgj])
:—Z;V:yl - (bgj]) . (6)

Compared to the above dynamic down-top process, the top-
down procedure tends to leverage the static method to simply
investigate the explicit multimodal interactions among original
input modalities at once. That is, the above explicit multimodal
interactions are captured via the immediate calculation among
modality transformations XJ[TE Then, we attempt to measure
the top-down multimodal sentiment context atten!*) of the s-th
head as follows:

X = concat (X[Sll o, Xl )

Jl Jling

~ ~ T ~
atten'® = Softmax (WqX[S] Wl (X[S]) ) w, Xt @)

where ‘concat’ refers to the concatenation operation. W, Wy,
and W, are the transformation matrices.

It is important to note that, the top-down multimodal
analysis process simply investigates the explicit multimodal
interactions at once via the static method. That is, the above
method can only capture the relatively simple interactions, and
completely ignores the implicit multimodal interactions, leading
to the relatively coarse-grained multimodal sentiment context.
Additionally, the down-top multimodal analysis focuses on the
implicit interactions, which completely ignores the explicit mul-
timodal interactions. Intuitively, we directly leverage the static
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top-down method or the dynamic down-top method to analyze
multiple modalities, which indeed fails to effectively capture
the much more expressive multimodal sentiment context.
Therefore, we integrate the top-down multimodal sentiment

context atten[* and the down-top coefficients cEj’-] into the

novel bi-direction dynamic coefficients (atten[s] + c£j1> This
naturally allows for bi-direction dynamic multimodal fusion
among X [Tl That is, our bi-direction dynamic coefficients
allows for simultaneously analyzing the high-level explicit and
implicit multimodal interactions, leading to the much more
fine-grained multimodal sentiment context.

Specifically, the top-down explicit multimodal sentiment
context atten!! is further transmitted to our carefully designed
dynamic multimodal routing procedure associated with multiple
dynamic iterations. That is, the multimodal sentiment context
Yj[s] can be represented as the weighted sum of XJ[TJ, with the

help of the dynamic down-top coefficients cgj-] and the top-

down explicit multimodal sentiment context atten/s!. Due to the
joint guidance from bidirectional multimodal fusion processes,
the novel bi-direction dynamic coefficient (CEE] + attenl?]
naturally allows us to simultaneously capture implicit and
explicit multimodal interactions at each iteration. Then, the
multimodal sentiment context can be dynamically updated via
multiple dynamic iterations, which allows for transmitting the
coarse-grained multimodal sentiment context to the much more
fine-grained one. This indeed gives the fusion model the strong
ability to effectively extract the much more high-level and fine-
grained multimodal sentiment context. The above procedure is
formulated as follows:

Vi) =37 (e + atten®) X1 ®

J i gli

When the head ‘s’ is set to 2, each modality can compute two
corresponding multimodal sentiment contexts ij and Yj[Q].
Then, the above sentiment context can be further integrated
into the modality-aware multimodal sentiment context ‘con,’,
‘con,’, and ‘con;’ via a convolution operation. For instance,
cong = conv (concat (YJ[j],YJf]) Jcernela). Subsequently,
all the modality-aware multimodal sentiment contexts are
further merged into the output ‘multimodality sentiment
context’ via a convolution operation : ‘multimodality sentiment
context’ = conv (concat (cong, con,, cony) , kernel).

As mentioned previously, the convolution transformation is
leveraged to analyze the X;, which allows for the convolutional
nonlinear representation. Accordingly, we use the HingeLoss
proposed by C. Baile [56] utilized to analyze nonlinear
information for reducing the discrepancy among modality-
aware multimodal sentiment contexts. Moreover, the standard
cross-entropy loss [57] is also used to measure the task
performance of the proposed model. The total loss is formulated
as follows:

totallosszZHingeLoss (con;,con;)+TaskLoss (rL,pL)
ZZmax (0,1 — ||D (coni)—D (con;) ||2) + rL - log (pL) (9)
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TABLE I: PERFORMANCE OF BAFN (BERT) ON CMU-MOSI. NOTE THAT (BERT) MEANS THE TEXTUAL
REPRESENTATION IS EXPLORED VIA BERT; ® FROM [21]; A FROM [37]
Models ‘ CMU-MOSI
‘ MAE(]) ‘ Corr(1) ‘ Acc-2(1) ‘ FI1(1) ‘ Acc-7(1)
BC-LSTM 1.079 0.581 73.9/- 73.9/- 28.7
MV-LSTM 1.019 0.601 73.9/- 74.0/- 33.2
RMFN® 0.922 0.681 78.4/- 78.0/- 38.3
RAVEN® 0.915 0.691 78.0/- 76.6/- 332
MFN 0.965 0.632 77.41- 77.3/- 34.1
MARN 0.968 0.625 77.1/- 77.0/- 34.7
TFN 0.970 0.633 73.9/- 73.4/- 32.1
LMF 0.912 0.668 76.4/- 75.71- 32.8
MulT 0.871 0.698 -/83.0 -/82.8 40.0
MCTN® 0.909 0.676 79.3/- 79.1/- 35.6
MFM® 0.951 0.662 78.1/- 78.1/- 36.2
Capsule Network (Bert) 0.762 0.778 83/86 83.4/86.1 39.5
TFN(Bert)® 0.901 0.698 -/80.8 -/80.7 349
LMF(Bert)® 0.917 0.695 -/82.5 -/82.4 332
ICCN (Bert) 0.860 0.710 -/83.0 -/83.0 39.0
MISA (Bert) 0.783 0.761 81.8/83.4 81.7/83.6 423
MAG (Bert) 0.712 0.796 84.2/86.1 84.1/86.0 -
Self-MM (Bert) 0.713 0.798 84.0/85.98  84.42/85.95 -
BAFN (Non-Enhanced) (Bert) 0.684 0.824 86.0/88.4 85.9/88.4 47.8
BAFN (Bert) 0.669 0.833 86.5/89.1 86.5/89.1 49.2

where ‘D’ refers to the variance function, ‘rl’ and ‘pL’
indicate the original label and predicted label respectively,
i,j € {a,v,t}, and i # j.

TABLE II: PERFORMANCE OF BAFN (XLNET) ON
CMU-MOSI. NOTE THAT (X) MEANS THE TEXTUAL
REPRESENTATION IS EXPLORED VIA XLNET; ¢ FROM

[5].

annotated video utterances (segments) from 5,000 opinion
videos of YouTube movie reviews. Similarly, each segment is
assigned with a specified sentiment in the range [-3, 3]. There
are 16,326 segments in the training set, 1,871 segments in the
validation set, and 4,659 segments in the testing set. Note that,
the same speaker of the training set is not allowed to appear
in the testing set, which benefits the model in exploiting the
speaker-independent multimodal sentiment interactions.

M \ CMU-MOSI
odels
| MAE(}) | Corr(1) | Acc-2() | FI(D) B. Features and Alignment
JjgN 8:ng 81222 ;;:?;: ;%ﬁ: For CMU-MOSI and CMU-MOSEI, we adopt the same
MFN 0.965 0.632 77.4/- 77.3/- method of MAG and MISA to extract the features of the
RMFN 0922 0.681 78.4/- 78.0/- ; : : :
MulT 0871 0,608 830 o specific modality. Speqﬁcally, the prf:tramed BERT [§O]
Capsule Network (X) 0.75 0799  83.7/85.9  83.8/85.9 and XLNet [61] are utilized to exploit the corresponding
]\;5 éV ]\(/)(())(jo 0.914 0.713 ~ 78.2/80.1 ~ 78.2/78.8 textual representations. Note that the original benchmarks first
0.921 0707  783/79.5 78.8/79.6 . .
MEN(X)® 0.898 0713 783/79.9 78.4/79.1 leveragefi the P2FA forced alignment model to align the text
RMFN(X)® 0.901 0.703  79.1/81.0  78.6/80.0 and audio at the phoneme level [62]. The benchmarks used
MulT(X)© 0849 0738  87.9/84.4  80.4/83.1 the interval duration of each word utterance as a time step.
MAG (X) 0.675 0.821  85.7/879  85.6/87.9 . . . .
Subsequently, the visual and audio are aligned by calculating
A b eV OO el 0836 seosss sesmss  the average value over the utterance interval of each word of
the text modality [51].
IV. EXPERIMENTS SETUPS C. Evaluation Metrics
A. Datasets

The CMU-MOSI (Multimodal Opinion Sentiment Intensity)
dataset [59] comprises 2,199 video segments collected from
93 opinion videos of YouTube movie reviews. Each video
comprises multiple opinion segments. Each segment of the
video is manually annotated with the continuous sentimental
label in the range of [-3, 3]. The value -3 indicates the strong
negative sentiment, and the value 3 denotes the strong positive
sentiment. The above dataset consists of 1,284 training, 229
validation, and 686 testing samples. The CMU-MOSEI dataset
[58] is an extension of CMU-MOSI associated with many
more utterance segments. This version is composed of 22,856

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

In this paper, the following evaluation metrics are introduced
to analyze task performance: mean absolute error (MAE),
Pearson correlation (Corr), binary accuracy (Acc-2), F-Score
(F1), and multiclass accuracy (Acc-7) ranging from -3 to 3. For
all metrics except for MAE, a relatively higher value represents
better task performance. Essentially, two distinct methods are
proposed to measure Acc-2 and F1. 1) In the work of [49],
the negative class is annotated with the label in the range of
[-3, 0), while the range of the non-negative class is [0, 3]. 2)
In contrast, in the work of [21], the ranges of the negative and
positive classes are [-3, 0) and (0, 3], respectively. The marker
-/- is employed to distinguish the distinct strategies, where the
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TABLE III: PERFORMANCE OF BAFN (BERT) ON CMU-MOSEI. NOTE THAT (BERT) MEANS THE TEXTUAL
REPRESENTATION IS EXPLORED VIA BERT; ® FROM [58]; A FROM [37].

M \ CMU-MOSEI
odels
\ MAEW) \ Corr(1) \ Acc-2(T) \ F1(1) \ Acc-7(1)
MFN® - 76.0/- 76.0/-
MV — LSTM® - - 76.4/- 76.4/- -
RAVEN 0.614 0.662 79.1/- 79.5/- 50.0
MCTN 0.609 0.670 79.8/- 80.6/- 49.6
MulT 0.580 0.703 -/82.5 -/82.3 51.8
Capsule Network (Bert) 0.581 0.80 83.8/86.4 84/86.3 48.6
TFN(Bert)® 0.593 0.700 -/82.5 -/82.1 50.2
LMF(Bert)® 0.623 0.677 -/82.0 -/82.1 48.0
MF M (Bert)® 0.568 0.717 -/84.4 -/84.3 51.3
ICCN (Bert) 0.565 0.713 -/84.2 -/84.2 51.6
MISA (Bert) 0.555 0.756 83.6/85.5 83.8/85.3 52.2
Self-MM (Bert) 0.530 0.765 83.79/85.23  83.74/85.3 -
BAFN (Non-Enhanced) (Bert) 0.563 0.806 85.3/86.9 85.2/86.8 499
BAFN (Bert) 0.551 0.815 86.3/87.1 86.1/87.1 51.3

left-side value refers to 1) and the right-side value stands for
2).

D. Training and Implementation Details

For all baselines and our proposed BAFN model, the grid
search is performed over the hyperparameters to select the
model with the best validation classification or regression loss.
The ranges of the essential hyperparameters are summarized
as follows: head [1, 6], iteration [1, 7], and convolution kernel
{3, 5, 7}. The training duration of the learning models is
governed by an early-stopping strategy with patience of 20
to 30 epochs, and the Adam optimizer is introduced to the
task. Additionally, our entire network is trained in an end to
end way rather than in two stages, where the network learns
all the steps between the initial input and the final output.
Specifically, during the training period, the output message of
the multimodal dynamic enhance block is directly transmitted
to the bi-direction attention block. Note that all baselines are
verified on the same benchmarks (CMU-MOSI and CMU-
MOSEI). Thus, the splits of the training, validation, and testing
trials are exactly the same for all baselines. In our work, we
leveraged several CPUs and GPUs as the computing resources
to conduct corresponding experiments. In detail, the CPUs are
Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz, and the GPUs
are GeForce RTX 3080. Additionally, PtTorch and Python are
utilized to implement all our experiments.

E. Comparisons

We introduced the non-attention based multimodal learning
and attention-based multimodal learning models as baselines.
Non-attention based: Bi-directional LSTM (BC-LSTM) [32],
RNN-based multistage fusion network (RMFN) [33], Multi-
view LSTM (MV-LSTM) [34], Self-Supervised Multi-task
Multimodal model (Self-MM) [35], Multimodal Factoriza-
tion Model (MFM) [36], Interaction Canonical Correlation
Network (ICCN) [37], Tensor Fusion Network (TFN) [40],

(MFN) [51], Modality-Invariant and -Specific Representations
for Multimodal Sentiment Analysis(MISA) [10], Multimodal
Transformer for Unaligned Multimodal Language Sequences
(MulT) [21], Multimodal Cyclic Translation Network (MCTN)
[52]. We also introduced the down-top attention based Capsule
Network [16] as the baseline model.

V. EXPERIMENTS RESULTS AND ANALYSIS

A. Performance comparison with state-of-the-art models.

The performance of state-of-the-art baselines, our proposed
BAFN and the ablation case BAFN (Non-Enhanced) are
illustrated in the following tables. Note that BAFN (Non-
Enhanced) refers to the case in which BAFN performs the
multimodal learning task on the original modality data rather
than the outputs of the multimodal dynamic enhanced block.
The bottom rows in Table I, Table II, and Table III demonstrate
the superiority and effectiveness of BAFN. Particularly, on the
CMU-MOSEI benchmark, BAFN exceeds the previous best
Self-MM (Bert) on the metric ‘Corr’ by a margin of 5.0%.
Additionally, on the CMU-MOSI dataset, BAFN outperforms
MISA (Bert) on the metric ‘Acc-7’ with an improvement of
6.9%. This implies that our proposed multimodal dynamic en-
hanced module and bi-direction attention block indeed provide
us with the benefit of effectively exploiting the much more
fine-grained and discriminative multimodal sentiment context
among multiple modalities. Essentially, we can observe that
BAFN obtains better results than the ablation case BAFN (Non-
Enhanced). The observations signify the necessity of decreasing
the intra-modality redundancy of auxiliary modalities (audio
and video) before the multimodal fusion process.

TABLE IV: PERFORMANCE OF BAFN (WITHOUT ATTEN-
TION BLOCK) AND BAFN (WITH ATTENTION BLOCK).

Models ‘ CMU-MOSI

Low-rank Multimodal Fusion (LMF) [41]. Attention-based: | MAE(]) | Cor(1) | Acc2(t) | FI(h) | Ace-7(1)
Multi_attention Recurrent Network (MARN) [49] Recurrent BAFN (without attention block) (Bert) ‘ 0.762 0.778 83/86 83.4/86.1 39.5
,
BAFN (with attention block) (Bert) \ 0.684 0.824 86.0/88.4  85.9/88.4 47.8

Attended Variation Embedding Network (RAVEN) [50], Multi-
modal Adaptation Gate (MAG) [5], Memory Fusion Network

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or
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(d) BAFN (with bi-direction attention block) in multi-
classification task

Fig. 4: t-SNE visualization of the multimodal fusion message learned
by BAFN on CMU-MOSI.

B. Effect of the bi-direction attention block of BAFN.

In this work, the bi-direction attention block is proposed to
explore the much more fine-grained multimodal sentiment
context among multiple modalities via the presented bi-
direction multimodal dynamic routing mechanism. Therefore,
we attempt to investigate how bi-direction attention affects
the multimodal sentiment analysis performance. Specifically,
the t-SNE method is utilized to provide the corresponding
visualization for the multimodal fusion representations learned
by the BAFN. The visualization of the binary classification
task and multiclassification task are illustrated in Figure 4.
For the binary classification task, the red points refer to the

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

positive sentiment class, and the green points indicate the
negative sentiment class. For the multiclassification task, the
color of the points depends on the corresponding annotated
sentimental labels. Additionally, the performance comparison
is demonstrated in Table IV. It is interesting to find that,
compared to the BAFN (without a bi-direction attention block),
the multimodal fusion message becomes increasingly separable
when the BAFN is associated with the bi-direction attention
block. This implies that the bi-direction attention block is
able to exploit much more fine-grained multimodal sentiment
context, leading to the significant improvement of classification
efficiency and expressive capability in the multimodal sentiment
analysis task. More importantly, we find that all the points are
on a curve that is similar to the manifold structure. The above
structure may demonstrate that the presented novel bi-direction
attention mechanism can exploit the low-dimensional inherent
data structure from the multimodal sentiment representative
space. That is, our proposed bi-direction attention block has the
potential to effectively discover the intrinsic sentiment portions
among multiple modalities by simultaneously considering the
explicit and implicit essential multimodal interactions.

C. Effect of head and convolution kernel of the bi-direction
attention block.

During the bi-direction multimodal dynamic routing process,
the multihead mechanism and convolution operation are
introduced to deal with the multiple modalities. Therefore,
we are interested in measuring how varying heads and convo-
lution kernel sizes affect the task performance of multimodal
sentiment analysis. The head s varies from 2 to 6, and each
head is associated with a corresponding convolution kernel is
of the same size (3x3, 5x5, or 7x7). In Figure 5, BAFN can
achieve good results with respect to the tested head and kernel.
Notably, kernel_3x3-based settings reach the peak value at
head 3, and kernel_5x5-based settings maximize prediction
performance at head 4. This implies that the multihead strategy
can give each head the strong ability to effectively exploit the
multiway and comprehensive information flow between the
modality transformation and the multimodal sentiment context.
It is interesting to find that, compared to the kernel 3x3- and
kernel_5x5-based settings, kernel_7x7-based settings receive
the best performance at head 5. Actually, kernel_7x7 attempts
to perform the multimodal sentiment analysis task within the
relatively larger receptive field, which may lead to the lack of
the much more fine-grained multimodal intercorrelations among
multiple modalities to some extent. Therefore, kernel_7x7-
based settings require more heads to highlight the much
more comprehensive multimodal sentiment context. Indeed, the
setting associated with too many heads may capture a similar
multimodal interaction pattern within the same feature map,
leading to information redundancy and poor task performance.
In contrast, the setting that comprises too few heads may fail
to effectively explore the sophisticated multimodal sentiment
context. In conclusion, the above observations signify the
necessity and effectiveness of the multihead mechanism and
convolution operation in the multimodal sentiment analysis
task.
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Fig. 5: Results of effect of head and convolution kernel of bi-direction
attention block on CMU-MOSI.
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Fig. 6: Effect of the multimodal dynamic enhanced block of BAFN
on CMU-MOSIL

D. Effect of the multimodal dynamic enhanced block of BAFN.

During the preprocess period, the multimodal dynamic
enhanced module is utilized to decrease the intra-modality
redundancy of auxiliary modalities (audio and video modality).
Consequently, we attempt to examine how the multimodal sen-
timent analysis model behaves by considering the multimodal
dynamic enhanced module. Moreover, we also investigate how
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the multimodal dynamic enhanced module affects the sentiment
analysis performance of the MAG and MISA models. As shown
in Figure 6, compared to the BAFN (without an enhanced
block), the BAFN (with an enhanced block) achieves the
relatively higher sentiment analysis performance. Similarly,
compared to the MAG (without an enhanced block) and
MISA (without an enhanced block) , the MAG (with an
enhanced block) and MISA (with an enhanced block) achieve
better sentiment analysis performance. Intuitively, with the
help of the multimodal dynamic enhanced, the much more
discriminative auxiliary modalities can be transmitted to the
following multimodal fusion block. This significantly boosts
the learning efficiency to capture the multimodal sentiment
context among multiple relatively discriminative modalities. In
summary, the above observations demonstrate the necessity
of leveraging the multimodal dynamic enhanced module to
deal with the multiple modalities before the multimodal fusion
procedure.

MOSEI (Bert)
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<
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o
t©
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1 2 3 4 5 6
Head
MOSI (Bert)
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O Accuracy O F1 Score

8 865
C
©
E &
o
s
o 835

82

1 2 3 4 5 6

Head

Fig. 7: Effect of the head of multimodal dynamic enhanced block
on CMU-MOSI and MOSEI

E. Effect of the head of the multimodal dynamic enhanced
block.

In this work, the multimodal dynamic enhanced block is
proposed to explicitly facilitate the intra-modality sentiment
context from the auxiliary modalities. Specifically, the proposed
multimodal dynamic enhanced block comprises M process
heads. Therefore, we are interested in investigating how distinct
process heads affect sentiment analysis performance. The
process head varies from 1 to 6. The number of iterations
of each head is set to 3. As shown in Figure 7, our proposed
model can obtain fairly good performance with respect to the
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process heads. It is important to observe that, our model reaches
the peak value at head 2 for the case of CMU-MOSI (Bert).
Regarding the CMU-MOSEI (Bert), we can observe that the
relatively higher performance is achieved at head 4. Compared
to the CMU-MOSI dataset, the CMU-MOSEI dataset includes
many more utterance segments. Therefore, the CMU-MOSEI
dataset requires more process heads to highlight the multimodal
sentiment context. Indeed, the multihead mechanism allows
for exploiting the intra-modality sentiment context with the
multispect view, yielding the comprehensive sentiment context.
Accordingly, the proposed multihead enhanced strategy further
boosts the expressive efficiency of the learning model. Addi-
tionally, the too-simple enhanced bock, which is comprised of
too few heads (e.g., 1 head), may fail to effectively discover the
comprehensive intra-modality sentiment context. In addition,
the excessively complex enhanced block that consists of too
many heads may investigate similar multimodal interaction
messages, leading to information redundancy.

MOSI (Bert)

88 |0 head_1 © head_2 0 head_3 O head_4

3

Performance
o]
B

Iteration

MOSI (XLNet)

O head_1 O head_2
head_ 3 O head_4

89
87.75

86.5 |

Performance

85.25 1

84

Iteration

Fig. 8: Effect of the dynamic iteration of multimodal dynamic
enhanced block on CMU-MOSI.

F. Effect of the dynamic iteration of the multimodal dynamic
enhanced block.

The proposed multimodal dynamic enhanced block com-
prises M process heads, and each head consists of N adaptive
iterations. In this part, we attempt to analyze how various
adaptive iterations affect the task performance. The number of
adaptive iterations ranges from 1 to 7, and the number of heads
varies from 1 to 4. In Figure 8, the head_i is used to denote the
head number of the testing case. For instance, the head_2 refers
to the testing case associated with 2 heads. The corresponding
comparison of runtime for models with various heads and
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Fig. 9: The average runtime of the testing settings associated with
multiple heads and multiple iterations on CMU-MOSI.

differing numbers of iterations in each head is illustrated in
Figure 9. Note that, each runtime is obtained by calculating the
average value over 5 repeat experiments. As shown in Figure 8§,
our proposed model can obtain fairly good performance with
respect to the adaptive iterations. It is interesting to find that our
model maximizes the task performance at adaptive iteration 4
of head_2 for the case of CMU-MOSI (Bert). For CMU-MOSI
(XLNet), we can observe that the relatively better performance
is received at adaptive iteration 3 of head_2. Intuitively, each
adaptive iteration attempts to exploit the intra-modality context
from the audio (video) modality via the more discriminative
modality (text). Then, the multiple stacked iterations focus on
dynamically updating or modifying the intra-modality sentiment
context, leading to the much more discriminative audio (video)
modality. Subsequently, the much more discriminative auxiliary
modalities are transmitted to the bi-direction attention block,
which significantly boosts the learning efficiency of the model.
Note that, compared to the one-head case associated with
multiple dynamic iterations, the multiple-head case can achieve
better task performance.

VI. CONCLUSION

We propose a multimodal dynamic enhanced block to
decrease the intra-modality redundancy of auxiliary modalities
(audio and video modality) via the more discriminative modality
(text) during the preprocessing period. This provides us with
the benefit of effectively obtaining the more discriminative
audio and video. Furthermore, the bi-direction attention block
is proposed to capture the much more fine-grained multimodal
sentiment context using the novel bi-direction multimodal
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dynamic routing mechanism. Note that our model exceeds
the previous best baseline on the metric ‘Acc-7’ by a large
margin of 6.9%. To the best of our knowledge, our model is
the first dynamic multimodal sentiment fusion network that
simultaneously considers the redundancy of auxiliary modalities
and the investigation of fine-grained multimodal sentiment
context.
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