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Figure 1: Automatically generated facial blendshapes for Stylized characters with different topologies.

ABSTRACT

Avatars are one of the most important elements in virtual environ-
ments. Real-time facial retargeting technology is of vital importance
in AR/VR interactions, the filmmaking, and the entertainment in-
dustry, and blendshapes for avatars are one of its important materi-
als. Previous works either focused on the characters with the same
topology, which cannot be generalized to universal avatars, or used
optimization methods that have high demand on the dataset. In this
paper, we adopt the essence of deep learning and feature transfer
to realize deformation transfer, thereby generating blendshapes for
target avatars based on the given sources. We proposed a Variational
Autoencoder (VAE) to extract the latent space of the avatars and then
use a Multilayer Perceptron (MLP) model to realize the translation
between the latent spaces of the source avatar and target avatars. By
decoding the latent code of different blendshapes, we can obtain
the blendshapes for the target avatars with the same semantics as
that of the source. We qualitatively and quantitatively compared our
method with both classical and learning-based methods. The results
revealed that the blendshapes generated by our method achieves
higher similarity to the groundtruth blendshapes than the state-of-art
methods. We also demonstrated that our method can be applied to
expression transfer for stylized characters with different topologies.
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†Corresponding author. The work is supervised by Dr. Ye Pan. E-mail:

whitneypanye@sjtu.edu.cn.
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1 INTRODUCTION

Real-time facial animation and retargeting is an essential topic in
virtual environments and 3D modeling, having broad application in
AR/VR interactions, social privacy, the filmmaking industry, and
entertainment [8,21,27,28]. With the increasing population flooding
in the Metaverse, this field is now moving towards increased flexi-
bility to enable users to customize their digital avatars with the aim
of increasing the accessibility of the technology to any user [13, 23].
In the industry, a facial expression is often treated as a superposition
of the movement of different muscles. Therefore, an efficient and
reasonable way of driving avatars’ faces using representatives called
blendshapes has been invented. Each blendshape represents a mod-
eled single action unit of the face with respect to the neutral face.
The commercially available facial retargeting product of ARKit [2]
and Faceware [9] calculate the weights of blendshapes, making it
possible to recover the facial expression on an avatar by linearly
combining the blendshapes [15].
Currently, the facial rigging and the generation of blendshapes

for avatars strongly depend on expertise and human labor. Although
some existing works have already explored how to automate this pro-
cess, the user is still required to either install professional software
such as MAYA and Blender or mark keypoints to facilitate the defor-
mation transformation on computers, which still requires users’ extra
professional training and high quality of keypoint marking [7,17,22].
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An automatic landmark detection can achieve high-quality keypoint
marking for human faces but not for stylized characters. Some other
works focused on the automatic rigging of human-like avatars that
share the same model template [27], although this approach pre-
vented users from employing other stylized characters. In this paper,
we aim to propose a system that automatically generates a complete
set of blendshapes for any given model without extra professions,
including specialist software or expertise. With our system, users
can perform real-time facial retargeting on their customized avatars
using their smart phones.

We present a deep-learning-based method to morph the target
avatar according to the deformation of the source avatar that repre-
sents the standard set of the blendshapes. The system consists of
two variational autoencoders (VAEs) and a domain transfer network.
Each VAE takes the deformed models as both the input and output.
The output of the middle layer of the VAE is extracted as the latent
space, and the domain transfer network maps the latent space of the
source avatar to that of the target avatar to realize the deformation
transformation. By taking advantage of the property of VAEs that
the input and output are identical, the dataset required for online
training only consists of a series of animations made by random
sampling on the avatar’s facial controllers. This feature is a further
step in the overall automation and generalization of our system.

We tested our system with five stylized avatars: Mery
(©meryproject), Ray (©cgtarian), Qing (©zhuiguang), Rose
(©callesantiago), and Malcolm (©animschool), and based on the
results for these characters, we assessed the our system both quantita-
tively and qualitatively. We sculpted blendshapes using an in-house
artist as the groundtruth. In a comparison with a state-of-art meth-
ods [11, 20, 29], we found that the blendshapes generated by our
method were much closer to the groundtruth. Our method outper-
formed [11, 20, 29] for blendshapes including “eyeBlink” and “ja-
wOpen”, “mouthRight”, “mouthSmileLeft”, and “mouthRollUpper”,
and achieved similar performance for other blendshapes such as
“eyeSquintRight” and “mouthPucker”. Moreover, the blendshapes
generated by our algorithm were free of issues, such as, deformation
arises in irrelevant areas, including the mouth, jaw, and left eye-
lid, asymmetric deformations, unexpected deformation, and wrong
semantics. We also conducted a user study in which participants as-
signed similarity scores for the blendshapes generated by our method
and [11,20,29] to the input source blendshapes. Results revealed the
blendshapes obtained with our method received highest similarity
score. Overall, our algorithm is able to deliver both accurate and
high-quality blendshapes.

In summary, this study has the three main contributions:

1. To the best of our knowledge, we presented the first fully auto-
matic blendshapes generation method for stylized characters
with different topologies. We devised a pipeline for gener-
ating reliable datasets of pairwise facial rigs with the same
semantics.

2. We demonstrated that the blendshapes generated by our algo-
rithm are accurate and of high quality, and its application to
sources having different styles, such as different expressions.

3. We released a set of 52 standard blendshapes for eight char-
acters sculpted our in-house artist. This dataset motivates the
further study in the domains of 3D character animation.

2 RELATED WORK

The blendshapes of a face model are a group of morphed versions of
the face model [14]. The blendshapes share the same topology as
the face model. They consist of some base expressions of the face,
and a comprehensive expression is generated by linearly combining
them. Mathematically, the neutral face model is denoted as b0, and

the the set of blendshapes is {b1,b2, ...,bN}. The comprehensive
facial expression of the model can be written as

f = b0+
N

∑
i=1

wi(bi−b0), (1)

where wi are the weights of the blendshapes. By calculating
the values of the blendshape weights, different expressions can be
obtained with little computation [14].
Each facial retargeting system has its standard definition of blend-

shapes; thus, the formulation of blendshapes often uses a group of
source blendshapes as a reference. Some methods directly trans-
fer the deformation of each face on the source mesh to the target
mesh, some methods extract the blendshapes from compound expres-
sions by optimization given blendshape weights, and some methods
resolve blendshapes when the source and target share the same
topology.

2.1 Deformation Transfer Methods
Deformation transfer can be achieved through two main ways: classi-
cal methods and learning-based methods. Classical methods are nor-
mally lightweight, but require manual labelling jobs [20]. Learning-
based methods supports automatic deformation with trained models,
but a large dataset is required [11, 29]. Both approaches will be
introduced and discussed below.

2.1.1 Classical Methods
Noh and Neumann [19], and Sumner et al. [25] both first used labeled
correspondence points of the source and target models to find the
face-to-face correspondence between their neutral models, and then
they transferred the motions of the vertices and surface according to
the found correspondence. [19] employed Radial Basis Functions
(RBF) and cylindrical projection to morph the source model to the
target model and find the dense surface correspondences, whereas
[25] calibrated the correspondence points to iteratively optimize
the source to the target. [19] transferred the motion of the vertices,
whereas [25] transferred that of the faces. Onizuka et al. [20] further
extended [25] by adding the loss of the difference of movement of
selected landmarks between the source and target to improve the
performance.

2.1.2 Learning-based Methods
Some recent studies have shown that deep learning methods such
as VAEs can transfer the deformation of one mesh to another mesh
effectively and semantically [26] [11] [24] [29]. This means that
deformation can be transferred between meshes with different topolo-
gies [11]. The VAE takes a series of morphed versions of 3D mesh
as a training set. One VAE is trained for the source avatar, and the

other is trained for the target avatar. The latent space Sk
human for

the expression k is obtained by inputting the source avatar with this
expression to the VAE. After mapping latent space Sk

human to Sk
avatar,

the Davatar is able to generate a morphed target model with the same
semantic meaning as the source.
Our work was inspired by [11, 29], but it has differences in terms

of task definition and takes one more step in automatic data con-
struction and model design. The method mentioned in [11] was not
developed for the semantic transfer of facial expression between
avatars, particularly not for the generation of blendshapes containing
only subtle deformation. Additionally, in the former study of [29],
considerable effort was devoted to manually constructing hierarchi-
cal human-avatar expression correspondences and to training the
human-to-avatar expression retargeting network based on those data.

2.2 Optimization Methods
Li et al. [15] proposed an alternative iterative optimization method.
In Step A, blendshape weights were fixed to minimize the loss
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of the reconstructed expression in terms of blendshapes. In Step
B, the blendshapes were fixed and optimized in terms of weights.
The two steps were alternatively employed to achieve convergence.
Neumann et al. [18] attempted to decompose compound expressions
with sparser representations, which were blendshapes. This method
is similar to that in [15], which alternatively minimized the loss
function in terms of blendshapes and weights. Also inspired by [15],
Li et al. [16] generated a rigged face model for a person from a single
scan. They estimated the blendshapes for a personalized model from
the source by minimizing the loss of reconstructed expressions given
a set of captured expressions of the target and the corresponding
blendshape weights.

2.3 Same Topology Problem
Bouaziz et al. [3] generated a personalized target model by perform-
ing training on a large set of facial meshes with the same topology to
study its identity PCA model, thus identifying the deformation fields
of template blendshapes. The blendshapes of target avatars were
modeled as the sum of the product of transfer operator and neutral
face of the target, and the deformation fields of the specific expres-
sion. Carrigan et al. [5] performed training on a set of expressions
of the target model with given blendshape weights. Since the target
and the source share the same topology, the expression training set
of the target was generated from that of the source.

3 METHODOLOGY

This section describes the overall structure of our blendshape gener-
ation system. As shown in Fig.2, the structure includes two compo-
nents: (1) the latent space extractor and (2) the latent space converter.
The core idea of our method is to use the VAE to extract the latent
space from both source model meshes and target model meshes,
which are denoted as Lsourceθ and Ltargetθ respectively, and then use
the latent space transfer network to convert between the two latent
spaces. These processes are expressed by the following equations:

Lsourceθ = Esource(source mesh), (2)

Ltargetθ = F (Lsourceθ ), (3)

target mesh= Dtarget(Ltargetθ ), (4)

where Esource represents the encoder of the VAE for the source
avatar, and Dtarget represents the decoder of the VAE for the tar-
get avatar. This method is based on the fact that the variational
autoencoder can construct a linearly continuous latent space.

3.1 Latent Space Extractor
The robustness of the VAE in deformation transfer has been validated
in multiple works [26] [11] [24] [29]. The structure of the VAE is
depicted in Fig.2. The input and output of the VAE network are
the same, which reduces the workload in labeling the dataset. VAE
is trained with discrete samples of meshes, but it can construct a
continuous and linear latent space. Even though we do not use the
latent space coded from the training samples, we can still obtain a
plausible output on the decoder side due to the characteristics of the
VAE that the input is encoded as a distribution over the latent space.
The input and output mesh features for the VAE are denoted as M
and M′, Z represents the learned latent space, and E and D are the
encoder and decoder of the VAE respectively. Then the loss function
can be defined by two components:

Lrec = ||M−D(E (M))||1 = ||M−D(Z)||1 = ||M−M′||1, (5)

LKL-Divergence = KL(p(Z)||q(Z|M)), (6)

where Lrec is the direct loss between the input mesh and the
reconstructed mesh. LKL-Divergence is the Kullback-Leibler (KL)

(a) Latent Space Extractor

(b) Latent Space Converter

Training:

Testing:

Encoder
Latent
Space Decoder

Encoder

Latent
Space

Decoder

Encoder
Latent
Space Decoder... . ....

Target Avatar
Training Set

Encoder
Latent
Space Decoder ... .....

Target Avatar
Training Set

Source Avatar
Training Set

Source Avatar
Training Set

Target Avatar
Latent Space

Source Avatar
Latent Space

A

MLP

Blendshapes of
Target Avatars

Blendshapes of
Source AvatarsSource Avatar

Figure 2: The overall workflow of proposed method. The training
procedure of our system consists of two variational autoencoders and
one multilayer perceptron. The testing pipeline starts from using the
encoder of VAE to retrieve the latent code for blendshapes of source
characters, and then uses MLP model to map it to the latent space of
the target avatar, thus decoded to the target blendshapes.
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divergence loss with posterior probability q(Z|M) and a Gaussian
distributed prior on the latent space Z, where

Z ∼N (0,1). (7)

The training process which is illustrated in Fig.2 shows that the
training procedure of the two VAEs are independent of each other,
and it is not even essential to train them on identically sized datasets
to achieve any synchronization.

3.2 Latent Space Converter
To transfer the latent space coded from the blendshapes of the source
avatars to replace that of the target avatars, a transfer function be-
tween the two latent spaces is constructed since the latent spaces
of the two avatars do not necessarily have the same coordinates.
The transfer function should output the latent code for the target
avatar with the same geometric and semantic features as the source
avatar. The supervised learning method is intuitive and effective for
such a vector-to-vector conversion problem because it constructs
a latent-code-to-latent-code dataset for both avatars. The dataset
requires the same semantics for the source avatar model represented
by the input latent code and the target avatar model represented by
the output latent code to achieve synchronization. Therefore the
multi-layer perceptron MLP model is suitable and effective for the
translation. The loss for the latent space converter is constructed as,

L = ||Ztarget−F (Zsource)||2, (8)

where Z denotes the input latent code, andF denotes the latent
space converter. This loss is measured as the mean square error
between the output of the network and the groundtruth latent code
of the target avatar.
As depicted in Fig.2, after the finishing the training of the two

Latent Space Extractors, the training of the Latent Space Converter
can be started.

4 IMPLEMENTATION

This section describes some implementation details, including how
we establish the training dataset, how we computed the deformation
representation for different models with the same topology, the
structures of the VAE and MLP networks, and training parameters.

4.1 Dataset Construction
In this work, we used facially rigged models of five characters, Mery,
Ray, Qing, Rose, and Malcolm. On each character’s face, there are
controllers embedded in the components such as eyelids, nose, lips,
and jaw to emulate muscle movements. The generation of the dataset
is based on the dataset published by Aneja et al. [1] which contains
10,000 expressions each for Bonnie (©joshsobelrigs), Mery, Ray,
and Malcolm, as well as the random sampling of facial controller
parameters. Furthermore, we also took 10,000 expressions/frames
from movie clips for Qing and Rose. We clustered the controller
semantically according to its distribution and location to ensure
the plausibility of the randomly generated facial animation. For
example, we clustered the three controllers on the left eyelid of the
character and synchronized them. Therefore, for the training set
of each VAE, we selected 480 expressions of each avatar from the
dataset, and then we generated 4,320 expressions randomly.
The size of the training set of MLP Latent space converter is 900.

The preparation of this dataset is completely automatic, and can be
performed within a few seconds, which is a practical benefits of
our proposed approach. The animated avatars contain thousands of
frames, which we can easily obtained from 2-3 minutes of movie
clips. We designed an algorithm to select animation pairs from
source and target avatars that have matched expressions and geome-
tries. The main strategy is that given an animated source avatar
model, we search in the dataset of the target avatar to determine

Figure 3: The strategy of forming facial rigs pairs.

whether there is an animation with sufficiently low “emotional dis-
tance” and “geometric distance” from the source as shown in Fig.3.
If an animation of the target avatar that is emotionally and geomet-
rically close to that of the source exists, then we include the pair
with the lowest distance into the “paired dataset”. To measure the
emotional distance, we first rendered every frame of the animation
in the dataset as an image. We then input the images to a trained
neural network for emotion classification (into seven classes: angry,
disgusted, fearful, happy, sad, neutral, and surprised). We retrieved
the parameters of the last fully connected layer as the emotion vector
of the model. The emotional distance between the two models is
calculated as the Jensen-Shannon divergence of the two emotion
vectors. The geometric distance is the sum of the distances between
the 49 landmarks on the faces of the two avatars. We first searched
for the 30 landmarks with the lowest emotional distance and found
the ones with lowest geometric distance. A pair of facial rigs was
established if the the two distances were jointly below a threshold.
The emotional distance was first ranked for each animation of the
source avatar to find the top 30 animations of the target that have the
most similar emotion. We then ranked the geometric distance for
the animation of the source avatar in the range of the 30 animation
candidates of the target one, and select the one with the lowest geo-
metric distance. If we cannot find an animation of the target avatar
that has a geometric distance less than 4.9 after the normalization of
the facial landmarks, we then abandon the construction of the pair
for this source animation.

4.2 Feature extraction for Mesh
To input the meshes into the VAE model, it is necessary to fit them
into a reasonable data structure. For the dataset of each character,
the animations with different expressions are all morphed versions
of its neutral phase; thus, the whole dataset shares the same topology.
In this sense, we represent every expression of a character with
respect to its neutral phase via the Deformation Representation (DR)
feature [12] [10]. Each mesh in the dataset of a character is denoted
as Mk = (Vk,E) and the neutral phase is M0 = (V0,E), where Vk
represents the 3D positions of the vertices of the meshes and E
represents the edges that connect the vertices.

The DR feature T k
i for pk

i , the ith vertex of Mk is computed by
minimizing the energy function,

E = ∑
neighbor vertex j

ci j||eeek
i j−T i

k eee0i j||, (9)

where eeek
i j = pk

i − pk
j is the vector edge of Mk and eee0i j = p0i − p0j

is the corresponding vector edge of M0. Therefore, the DR fea-

ture T k
i is the transformation matrix that represents the scaling and

shearing of pk
i ’s one ring neighbor. The computed representation is

anine-dimensional vector at each vertex. All these vectors are then
concatenated into a |V |×9 matrix.
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4.3 Structure of VAE Latent Space Extractor

The structure of our proposed VAE is described in Fig.4 and Tab.1.
The input l0 and output l7 of the network are both DRs of the 3D
models with size 9× |V |. The middle layers l1, l2, l3, l4, l5 are all
convolutional layers. l6 is the reshape of l5 from 1× |V | to |V |,
which is followed by the fully connected layer F1. The latent space
is spanned by Z2 with 25 dimensions.

4.4 Structure for MLP Latent Space Converter

The structure of our proposed MLP network is described in Fig.4
and Tab.2. The Latent Space Converter is a seven-layer MLP model.
The input of the Latent Space Converter space is the latent code
extracted from the blendshape models of the source avatar, which is
a 25-dimensional vector. The output of the converter is that of the
target avatar with the same format. The middle layers all have 100
dimensions.

4.5 Training Details

We have trained two deep learning models: the Latent Space Ex-
tractor and Latent Space Converter. We used Bonnie as the source
avatar and five other different avatars, Mery, Ray, Qing, Rose, and
Malcolm, as the target avatars. The training datasets of the two
VAEs contain 4,800 expressions for the source avatar Bonnie and
4,800 expressions for each target avatar. All the VAE networks were
trained for 80 epochs with a learning rate of 1e-4 and a decay of 0.5
every ten epochs. We set the batch size to 30 and the dimension of
the latent space to 30. The training requires about two days.
The Latent Space Converter is the MLP model. The training

dataset for this network consists of 900 pairs of latent codes for both
the source and target avatars. All the MLP networks were trained
for 50 epochs with a learning rate of 1e-4 and a decay of 0.6 every
ten epochs. This model required about five hours to train.
The training frameworks were implemented in Keras 2.2.0 with

Tensorflow 1.10.0 backend. All the implementations were run on
a PC with CUDA 9.0. The training code and labeled dataset are
available at https://whitneypanye.github.io/.

5 EVALUATION
Our method was evaluated with three other competitive baselines,
including geometric optimization and deep learning.
The first competitive baseline was the landmark-guided defor-

mation transfer method (LDT) [20]. Following the implementation
procedure of LDT, the 42 landmarks were manually labeled on both
the source and target avatars in the neutral phase. Then the LDT was
applied to generate the deformed blendshapes of target avatars with
the source blendshapes.
Next, the automatic unpaired shape deformation transfer approach

(Gao et al.) [11] was employed as the second baseline. Despite the
original work being designed for general shape deformations, it
was still comparable and applicable to the automatic blendshape
generation problem. Specifically, the same VAE latent space extrac-
tor was used for our model as the baseline for automatic unpaired
shape deformation transfer. But, the MLP latent space converter was
replaced with a new one trained on the light field distance (LFD)
metric [6].
The last baseline was the facial expression retargeting framework

made by easy manual annotation (Zhang et al.) [29]. Similar to the
automatic unpaired shape deformation transfer method, our model’s
VAE model was kept. As for the latent space converter, the triplet
annotation pipeline for the facial expression retargeting framework
was re-implemented and generated thousands of triple-wise data to
re-train the MLP network.
For a fair comparison, the automatic unpaired shape deformation

transfer method [11], the same network structure was kept for the
facial expression retargeting framework [29], and our model.

5.1 Quantitative Analysis
The industrial standard for the facial blendshapes has been well
defined by some commercially available products such as ARKit
[2]. In this work, we created a set of blendshapes for each
avatar by in-house artist as groundtruth, which are “eyeBlinkLeft”,
“eyeBlinkRight”, “eyeSquintLeft”, “eyeSquintRight”, “jawLeft”,
“jawRight”, “jawOpen”, “mouthLeft”, “mouthRight”, “mouth
smile left”, “mouthSmileRight”, “mouthDimpleLeft”, “mouthDimp-
leRight”, “mouthRollUpper”, “browDownLeft”, “browDownRight”,
“browOuterUpLeft”, “browOuterUpRight”, “mouthFunnel”, and
“mouthPucker”. These blendshapes all follow the standard fash-
ion defined by ARKit and have consistent semantics.
To quantitatively estimate the distance between our result and

the groundtruth, and also that between the baseline result and the
groundtruth, we calculated the mean square error between the re-
sults and the groundtruth. Mathematically, for each vertex ri in the
resulting blendshape, and vertex gi in the groundtruth blendshape,
the mean square error for the blendshape b ∈ {0,1,2, ...,19} was
estimated as,

MSEb =
N

∑
i=0
||rrrbbb

iii (x,y,z)−gggbbb
iii (x,y,z)||22, (10)

where rrrbbb
iii (x,y,z) and gggbbb

iii (x,y,z) represent the 3D positions of the rb
i

and gb
i respectively.

Figure 5 shows the mean square errors for four methods across
7 basic blendshapes. Our method achieved lowest error score
(Mean,M = .085, StandardError,SE = .01), demonstrating the
effectiveness of our algorithm. The mean error increased from
the our algorithm to Zhang et al. (M = .144,SE = .023), to LDT
(M = .153,SE = .008) to Gao et al. (M = .181,SE = .129)methods,
in that order.
A one-way ANOVA was conducted to determine the effects of

different methods on mean square error. There were no outliers, as
assessed by boxplot; data was normally distributed for each group,
as assessed by Shapiro-Wilk test (p > .05). There was homogeneity
of variances, as assessed by Levene’s test for equality of variances,
p = .147. There was a significant main effect of different methods,
F(3,139) = 5.654, p = .001. Tukey post hoc analysis revealed that
the mean error for our method was significantly lower than the LDT
(p= .005), the Zhang et al. (p= .016) and the Gao et al., (p< .001),
and no other group differences were statistically significant.

5.2 User Study
The aim of the user study was to verify that the blendshapes gener-
ated by our algorithm are visually and semantically correct.

5.2.1 Participants & design
We recruited 30 participants (14 males and 16 females) to complete
the survey. The participants were all college students aged 18 to 25
years old. They were naı̈ve to the purposes of the experiment.
The experiment utilized 4 methods (Ours, LDT, Gao & Zhang) ×

characters 5 (Mery, Ray, Qing, Rose & Malcolm) × 7 blendshapes
in a within-subject design. Thus, each participant took part in 140
trials in total. To avoid fatigue or carry-over effects, images were
viewed by the participants in random order.

5.2.2 Task & Procedures
The participants all signed the consent form before engaging in the
trial. The participants were given a pair of blendshapes, which is
the source and target blendshapes, together with the blendshape
name. They assessed the similarity of the paired blendshapes, and
the semantic correspondence of the target blendshape to its name on
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(a) Latent Space Extractor (Variational Autoencoder)

DR
representation

input

DR
representation

output

(b) Latent Space Converter (Multilayer Perceptron)

Source
Latent
Code

Target
Latent
Code

Figure 4: The structure of the proposed networks.

Figure 5: Statistics of quantitative study. Mean square error of results generated by [11, 20, 29] and our method respectively versus 7 basic
blendshapes.

Figure 6: Statistics of the user study. The bars demonstrate the mean
and standard deviation of the received score of how similar the results
generated by [11,20,29] and our method for Mery, Ray, Qing, Rose,
and Malcolm, respectively, are to the source blendshapes.

a seven-point likert scale. The content of the survey can be accessed
at https://forms.gle/K5pbKFkcLCEcLFe59. The survey con-
tained 142 questions. Three of them were demographic questions,
140 questions asked participants to evaluate the similarity of the
source and the target generated by difference methods.
The survey required about 10 minutes to complete. The partici-

pants were paid 7 USD. The experiment was approved by Shanghai
Jiao Tong University Research Ethics Committee.

5.2.3 Results
Figure 6 shows the average similarity scores obtained for four meth-
ods across five characters. Our method achieved highest similarity
score (Mean,M = 5.528, StandardError,SE = .125), demonstrat-
ing the effectiveness of our algorithm. The mean score decreased
from the our algorithm to LDT (M = 4.203,SE = .135), to Zhang

et al. (M = 3.895,SE = .121) to Gao et al. (M = 2.713,SE = .111)
methods, in that order.
A three-way repeated measures ANOVA was conducted to deter-

mine the effects of different methods on similarity score. There were
no outliers, as assessed by boxplot; data was normally distributed
for each group, as assessed by Shapiro-Wilk test (p > .05). The
assumption of sphericity was violated, as assessed by Mauchly’s test
of sphericity, χ2(5) = 29.777, p < .001. Therefore, a Greenhouse-
Geisser correction was applied. There was a significant main effect
of different methods, F(1.942,56.316) = 169.552, p < .001. Post
hoc analysis with a Bonferroni adjustment revealed that the mean
similarity score for our method was significantly higher than the
LDT (p < .001), the Zhang et al. (p < .001) and the Gao et al.,
(p < .001), respectively.

6 DISCUSSION

In this section, we discussed findings obtained from the experiment
and its applications. First, we discussed results comparing with
the baseline methods. Second, in our experiment, we employed
multiple characters as source avatars; in addition to Bonnie, we
showed human characters can also be a good source of the stylized
target avatars. Third, our system was found to also to be robust in
directly transferring emotional expressions. Lastly, by integrating
our generated blendshapes of Mery and the ARKit Facial Retargeting
function for calculating blendshape weights, end users can generate
facial animations with their iPhone devices.

6.1 Discussion on results

Figure 7 presents the different blendshapes generated by four meth-
ods for five characters. We observed that the LDT method might pro-
duce rough edges, while the automatic unpaired shape deformation
transfer methods used by Gao et al. [11] and the facial expression
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(a) 7 Blendshapes generated for Mery.

Blendshape

B
o

n
n

ie

Source

eyeBlinkLeft eyeSquintRight jawOpen mouthRight mouthSmileLeft mouthPucker mouthRollUpper

LDT

Ours

R
ay

Gao
et al.
[10]

Zhang
et al.
[28]

(b) 7 Blendshapes generated for Ray.
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(c) 7 Blendshapes generated for Qing.
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(d) 7 Blendshapes generated for Rose.
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(e) 7 Blendshapes generated for Malcom.

Figure 7: Comparison of blendshape generation for five avatars: Mery,
Ray, Qing, Rose, and Malcolm. The first row is the 7 basic source
blendshapes, followed by results generated from [11,20,29] and our
methods for Mery, Ray, Qing, Rose, and Malcolm respectively.

retargeting framework used by Zhang et al. [29], also produce an
array of issues. Some of these issues include deformation arises in
irrelevant areas, asymmetric deformations, corrupted deformation,
and wrong semantics. As such, our method is robust in most cases
and preserves symmetry and semantics well.

Obtaining some blendshapes have proven to be a difficult task
for all the baseline methods, and each of these methods may have
limitations. For example, The blendshape “eyeBlinkLeft” creates
significant issues when the LTD method is applied in its creation.
One of the issues is that the upper eyelid does not extend to the
lower eyelid while the edges of the upper eyelid are not smooth. The
blendshapes obtained by Gao et al. [11] and Zhang et al. [29] also
have issues, including a deformed mouth instead of deformed eyelids.
We note the upper eyelid generated by our method sometimes cannot
quite reach the lower eyelid. Additionally, the application of the
LTD method produces a high-quality blendshape “eyeSquintRight”
with no issues present. However, when obtained through the Gao et
al. [11] and the Zhang et al. [29], deformation arises in irrelevant
areas, namely, the mouth. Our method strives to create blendshapes
with minimal deformation of the lower eyelid. We note that the
MSE for LDT method is still larger than our method, since MSE
distance is a global metric, which might not reflect the accurate
expression semantics, especially for minor facial deformations such
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Figure 8: Examples for identity transfer results. The top row is source
human face and its blendshapes, and the subsequent row is different
character face and its automatically generated blendshapes.
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Figure 9: Examples for expression transfer results. The top row is
source character face and its expressions, and subsequent row is
target character faces and its automatically generated expressions.

as “eyeSquint”.

From the qualitative and quantitative results demonstrated in Fig-
ure 5 to Figure 7, it can be observed that our method generated
the most satisfactory target blendshapes regarding the expression
semantics and facial deformations. In comparison, the LDT ap-
proach produced practical expressions in most cases but failed when
upper and lower lip landmarks were mistakenly annotated. Thus,
the blendshape generation quality of the LDT method was heavily
dependent on the landmark annotation accuracy. Additionally, manu-
ally labeling landmarks for stylized characters requires a tremendous
amount of time. There are OpenCV or other open-source frame-
works can automatically extract landmarks for human face. However,
these frameworks are difficult to apply to stylized characters with
exaggerated and artistic expressions. On the other side, the deep
learning-based methods, which include the automatic unpaired shape
deformation transfer methods and the facial expression retargeting
framework, were inspired by the data-driven idea. They required
no proficient manual expertise, but these two baselines are not de-
veloped for transfer of blendshapes between avatars, which only

contain subtle deformation. The automatic unpaired shape defor-
mation transfer method had to measure the LFD [6] for optimizing
the blendshape results. However, the LFD metric was too coarse to
capture the fine details of facial deformations, such that the trans-
lated expression was generally missed in accuracy. Besides, the
facial retargeting framework built upon easy annotations still needs
at least hours from novice annotators. Despite its quite intensive
labor requirements, the blendshape generation results of the facial
expression retargeting framework may fail in specific cases like
mouth puckering and smiling, which are less annotated in training
data.

6.2 Blendshape Generation with Different Sources
In addition to using the stylized character Bonnie as the source
avatar, it is also feasible that we use some other more realistic
characters such as humans [4] as the source. First, Fig.8 illustrates
the results of several key blendshapes, revealing that with a human
character as the source, high-quality blendshapes were generated
for Mery. However, using Bonnie as the input has the advantages
of higher quality and more consistent styles. For the blendshape
“eyeBlink”, Bonnie-sourced blendshapes had more closed eyelids.
For the blendshape “mouthSmile”, Bonnie-sourced blendshapes had
more exaggerated expressions. Second, Fig.8 also demonstrates our
method can fully automatically generate a set of blendshapes for any
arbitrary characters with different topologies.

6.3 Expression transfer
In addition to blendshape generation, our method is also effective
in accurately transferring expressions with different emotions. We
used Bonnie with six source expressions, anger, disgust, fear, joy,
sadness, and surprise as the source model. The source model are
all in different emotions. As we can infer from Fig.9 that the re-
sult of translation of expression is robust since both Mery and Ray
demonstrate that the correct displacement of the components such
as eyebrows, eyelids, nose, cheek, and lips; thus, the emotions are
accurately conveyed.

6.4 Applications & future work
We created 52 blendshapes for the source character in the standard
manner defined by ARKit. This resulted in a fully corresponding
set of blendshapes between the source and target characters. Once
the resulting blendshapes are embeded on an iPhone, the users will
be able to enjoy a real-time facial retargeting service. We will also
release the resulting blendshapes for 8 new characters, which will
motivate the further study in the domains of character rigging and
animation.
There are many potential avenues for next steps. To further im-

prove the fidelity of our generated result, we could include several
interesting methods (e.g. Laplacian [3] and Radial Basis Func-
tions [19]). A potential route would be design these into the loss
terms. We also hope to extend the evaluation to using more complex
geometry with rich curvatures and details, e.g., small wrinkles. It
would be interesting to validate if those details can be preserved
after deformation. Lastly, we focus on facial gestures in this study.
To support our method to be applicable to a generic scenario, we
plan to include textures in future work.

7 CONCLUSION

To move one step further toward the automation of facial interactions
in AR/VR, we proposed to use a deep learning method to generate
blendshapes for avatars. By taking the advantage of the capability of
the VAE of learning a smooth latent space, we constructed a latent
space extractor as well as an MLP-model-based converter to bridge
the latent space between the source and target avatars. By both
quantitative and qualitative assessment, we can concluded that our
method outperforms the traditional LDT transfer method in terms
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of quality and fidelity for some particular blendshapes. We will
continue to refine the details of the blendshapes as well as to make
the preparation and training process more accessible for public use.
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A ARCHITECTURE OF THE NETWORKS

layer size

l0 (input) 9×|V |
l1 (Conv) 128×|V |
l2 (Conv) 64×|V |
l3 (Conv) 64×|V |
l4 (Conv) 64×|V |
l5 (Conv) 1×|V |
l6 (Reshape) |V |
F1 (FC) 300
Z0,Z1,Z2 25
F2 (FC) 300
l7 (output) 9×|V |

Table 1: Latent Space Extractor (Variational Autoencoder) architec-
ture.

layer size

l0 (input) 25
l1 100
l2 100
l3 100
l4 100
l5 100
l6 (output) 25

Table 2: Latent Space Extractor (Multilayer Perceptron) architecture.
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